Advertisement

Nonlinear Operators on Graphs via Stacks

  • Santiago Velasco-Forero
  • Jesús Angulo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9389)

Abstract

We consider a framework for nonlinear operators on functions evaluated on graphs via stacks of level sets. We investigate a family of transformations on functions evaluated on graph which includes adaptive flat and non-flat erosions and dilations in the sense of mathematical morphology. Additionally, the connection to mean motion curvature on graphs is noted. Proposed operators are illustrated in the cases of functions on graphs, textured meshes and graphs of images.

Keywords

Nonlinear Operator Laplacian Matrix Graph Signal Graph Diffusion Mathematical Morphology Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27(6), 1085–1095 (1979)CrossRefGoogle Scholar
  2. 2.
    Biasotti, S., et al.: SHREC 14 track: Retrieval and classification on textured 3d models. In: Eurographics Workshop on 3D Object Retrieval, pp. 111–120 (2014)Google Scholar
  3. 3.
    Calderon, S., Boubekeur, T.: Point morphology. Trans. Graph. 33(4), 45 (2014)CrossRefGoogle Scholar
  4. 4.
    Chakik, A.E., Elmoataz, A., Desquesnes, X.: Mean curvature flow on graphs for image and manifold restoration and enh. Sig. Process. 105, 449–463 (2014)CrossRefGoogle Scholar
  5. 5.
    Chung, F.R.K.: Spectral Graph Theory (CBMS Regional Conference Series in Mathematics, No. 92). American Mathematical Society, Providence (1996)Google Scholar
  6. 6.
    Cousty, J., Najman, L., Dias, F., Serra, J.: Morphological filtering on graphs. Comput. Vis. Image Underst. 117(4), 370–385 (2013)CrossRefGoogle Scholar
  7. 7.
    Ćurić, V., Landström, A., Thurley, M.J., Luengo Hendriks, C.L.: Adaptive mathematical morphology-a survey of the field. Pattern Recogn. Lett. 47, 18–28 (2014)CrossRefGoogle Scholar
  8. 8.
    Elmoataz, A., et al.: Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing. Trans. Image Proc. 17(7), 1047–1060 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Elmoataz, A., et al.: Non-local morphological PDEs and \(p\)-Laplacian equation on graphs with applications in image processing and machine learning. J. Sel. Top. Sig. Process. 6(7), 764–779 (2012)CrossRefGoogle Scholar
  10. 10.
    Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1998)MATHGoogle Scholar
  11. 11.
    Garcia-Cardona, C., et al.: Multiclass data segmentation using diffuse interface methods on graphs. Trans. Patt. Ana. Mach. Lear. 36(8), 1600–1613 (2014)CrossRefGoogle Scholar
  12. 12.
    van Gennip, Y., et al.: Mean curvature, threshold dynamics, and phase field theory on finite graphs. Milan J. Math. 82(1), 3–65 (2014)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Heijmans, H.J., Ronse, C.: The algebraic basis of mathematical morphology i. dilations and erosions. CVGIP 50(3), 245–295 (1990)MATHGoogle Scholar
  14. 14.
    Heijmans, H., Nacken, P., Toet, A., Vincent, L.: Graph morphology. J. Vis. Commun. Image Represent. 3(1), 24–38 (1992)CrossRefGoogle Scholar
  15. 15.
    Kondor, R.I., Lafferty, J.: Diff. kernels on graphs. In: ICML, pp. 315–322 (2002)Google Scholar
  16. 16.
    Maragos, P.: Lattice image processing: a unification of morphological and fuzzy algebraic systems. J. Math. Imaging Vis. 22(2–3), 333–353 (2005)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Maragos, P., Schafer, R.W.: Morphological filters-part II. IEEE Trans. Acoust. Speech Sig. Process. 35(8), 1170–1184 (1987)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Maragos, P., Ziff, R.D.: Threshold superposition in morphological image analysis systems. Trans. Pattern Ana. Mach. Lear. 12(5), 498–504 (1990)CrossRefGoogle Scholar
  19. 19.
    Merkurjev, E., Kostic, T., Bertozzi, A.L.: An MBO scheme on graphs for segmentation and image processing. SIAM J. Imaging Sci. 6(4), 1903–1930 (2013)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Merriman, B., Bence, J.K., Osher, S.: Diffusion generated motion by mean curvature. Department of Mathematics, University of California, Los Angeles (1992)Google Scholar
  21. 21.
    Meyer, F.: Watersheds on weighted graphs. Pattern Recogn. Lett. 47(1), 72–79 (2014)CrossRefGoogle Scholar
  22. 22.
    Ronse, C.: Why math. morph. needs complete lattices. Sig. Process. 21(2), 129–154 (1990)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Ronse, C., Heijmans, H.J.: The algebraic basis of mathematical morphology: II. openings and closings. CVGIP 54(1), 74–97 (1991)CrossRefMATHGoogle Scholar
  24. 24.
    Sandryhaila, A., Moura, J.: Big data analysis with signal processing on graphs. IEEE Sig. Process. Mag. 31(5), 80–90 (2014)CrossRefGoogle Scholar
  25. 25.
    Segarra, S., Huang, W., Ribeiro, A.: Diffusion and superposition distances for signals supported on networks. CoRR abs/1411.7443 (2014)Google Scholar
  26. 26.
    Shuman, D.I., et al.: A windowed graph fourier transform. In: 2012 IEEE Statistical Signal Processing Workshop (SSP), pp. 133–136 (2012)Google Scholar
  27. 27.
    Shuman, D.I., et al.: The emerging field of signal processing on graphs. IEEE Sig. Process. Mag. 30(3), 83–98 (2013)CrossRefGoogle Scholar
  28. 28.
    Ta, V.T., Elmoataz, A., Lézoray, O.: Nonlocal pdes-based morphology on weighted graphs for image and data processing. Trans. Imaging Proc. 20(6), 1504–1516 (2011)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Ta, V.-T., Elmoataz, A., Lézoray, O.: Partial difference equations over graphs: morphological processing of arbitrary discrete data. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 668–680. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  30. 30.
    Velasco-Forero, S., Angulo, J.: Classification of hyperspectral images by tensor modeling and additive morph. decom. Pattern Recogn. 46(2), 566–577 (2013)CrossRefMATHGoogle Scholar
  31. 31.
    Velasco-Forero, S., Angulo, J.: On nonlocal mathematical morphology. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 219–230. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  32. 32.
    Vincent, L.: Graphs and mathematical morphology. Sig. Proc. 16(4), 365–388 (1989)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Wendt, P., et al.: Stack filters. Trans. Acoust. Speech Sig. 34(4), 898–911 (1986)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.MINES ParisTech - PSL-Research University - Centre de Morphologie MathématiqueParisFrance

Personalised recommendations