Symplectic Structure of Information Geometry: Fisher Metric and Euler-Poincaré Equation of Souriau Lie Group Thermodynamics
Abstract
We introduce the Symplectic Structure of Information Geometry based on Souriau’s Lie Group Thermodynamics model, with a covariant definition of Gibbs equilibrium via invariances through co-adjoint action of a group on its momentum space, defining physical observables like energy, heat, and momentum as pure geometrical objects. Using Geometric (Planck) Temperature of Souriau model and Symplectic cocycle notion, the Fisher metric is identified as a Souriau Geometric Heat Capacity. In the framework of Lie Group Thermodynamics, an Euler-Poincaré equation is elaborated with respect to thermodynamic variables, and a new variational principal for thermodynamics is built through an invariant Poincaré-Cartan-Souriau integral. Finally, we conclude on Balian Gauge theory of Thermodynamics compatible with Souriau’s Model.
Keywords
Information Geometry Symplectic Geometry Momentum Map Cartan-Poincaré Integral Invariant Lie Group Thermodynamics Geometric Mechanics Euler-Poincaré Equation Gibbs Equilibrium Fisher Metric Maximum Entropy Gauge TheoryReferences
- 1.Cartan, E.: Leçons sur les Invariants Intégraux. Hermann, Paris (1922)zbMATHGoogle Scholar
- 2.Souriau, J.M.: Définition covariante des équilibres thermodynamiques. Suppl. Nuov. Cimento 1, 203–216 (1966)MathSciNetGoogle Scholar
- 3.Souriau, J.M.: Géométrie de l’espace de phases. Comm. Math. Phys. 374, 1–30 (1966)Google Scholar
- 4.Souriau, J.M.: Structure des systèmes dynamiques. Ed Dunod, Paris (1970)zbMATHGoogle Scholar
- 5.Souriau, J.M.: Thermodynamique et géométrie. In: Bleuler, K., Reetz, A., Petry, H.R. (eds.) Differential Geometrical Methods in Mathematical Physics II, pp. 369–397. Springer, Berlin (1978)CrossRefGoogle Scholar
- 6.Souriau, J.M.: Mécanique classique et géométrie symplectique. CNRS Marseille. Cent. Phys. Théor. , Report ref. CPT-84/PE-1695 (1984)Google Scholar
- 7.Libermann, P., Marle, C.M.: Symplectic Geometry and Analytical Mechanics. Springer, Heidelberg (1987)CrossRefzbMATHGoogle Scholar
- 8.Marle, C.M.: On Henri Poincaré’s note “Sur une forme nouvelle des équations de la mécanique”. J. Geom. Symmetry Phys. 29, 1–38 (2013)MathSciNetzbMATHGoogle Scholar
- 9.Marle, C.M.: Symmetries of Hamiltonian systems on symplectic and poisson manifolds. In: 15th International Conference on Geometry, Integration and Quantitative., Sofia, pp.1-86 (2014)Google Scholar
- 10.Barbaresco, F.: Koszul information geometry and Souriau geometric temperature/capacity of lie group thermodynamics. Entropy 16, 4521–4565 (2014)MathSciNetCrossRefGoogle Scholar
- 11.de Saxcé, G., Vallée, C.: Bargmann group, Momentum tensor and Galilean invariance of Clausius-Duhem inequality. Int. J. Eng. Sci. 50, 216–232 (2012)MathSciNetCrossRefGoogle Scholar
- 12.Vallée, C., Lerintiu, C.: Convex analysis and entropy calculation in statistical mechanics. Proc. A. Razmadze Math. Inst. 137, 111–129 (2005)MathSciNetzbMATHGoogle Scholar
- 13.Sternberg, S.: Symplectic Homogeneous Spaces. Trans. Am. Math. Soc. 212, 113–130 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
- 14.Balian, R., Alhassid, Y., Reinhardt, H.: Dissipation in many-body systems: a geometric approach based on information theory. Phys. Rep. 131(1), 1–146 (1986)MathSciNetCrossRefGoogle Scholar
- 15.Balian, R., Valentin, P.: Hamiltonian structure of thermodynamics with gauge. Eur. Phys. J. B 21, 269–282 (2001)MathSciNetCrossRefGoogle Scholar
- 16.Balian, R.: The entropy-based quantum metric. Entropy 16(7), 3878–3888 (2014)MathSciNetCrossRefGoogle Scholar
- 17.Duhem, P.: Sur les équations générales de la thermodynamique. In: Annales scientifiques de l’ENS, 3ème série, tome 9, pp. 231–266 (1891)Google Scholar
- 18.Fréchet, M.: Sur l’extension de certaines évaluations statistiques au cas de petits échantillons. Revue de l’Institut International de Statistique 11(3/4), 182–205 (1943)CrossRefzbMATHGoogle Scholar