Quantization of Hyperspectral Image Manifold Using Probabilistic Distances

  • Gianni Franchi
  • Jesús AnguloEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9389)


A technique of spatial-spectral quantization of hyperspectral images is introduced. Thus a quantized hyperspectral image is just summarized by K spectra which represent the spatial and spectral structures of the image. The proposed technique is based on \(\alpha \)-connected components on a region adjacency graph. The main ingredient is a dissimilarity metric. In order to choose the metric that best fit the hyperspectral data manifold, a comparison of different probabilistic dissimilarity measures is achieved.


Quantization Hyperspectral images Information geometry Probabilistic distances Mathematical morphology 


  1. 1.
    Chang, C.I. (ed.): Hyperspectral Imaging: Techniques for Spectral Detection and Classification, vol. 1. Springer Science & Business Media, New York (2003)Google Scholar
  2. 2.
    Tosic, I., Frossard, P.: Dictionary learning. IEEE Signal Process. Mag. 28(2), 27–38 (2011)CrossRefGoogle Scholar
  3. 3.
    Bellman, R.E.: Adaptive Control Processes. Princeton University Press, Princeton (1961)CrossRefzbMATHGoogle Scholar
  4. 4.
    Maragos, P.: Pattern spectrum and multiscale shape representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 701–716 (1989)CrossRefzbMATHGoogle Scholar
  5. 5.
    Nielsen, F., Nock, R.: Sided and symmetrized Bregman centroids. IEEE Trans. Inf. Theor. 55(6), 2882–2904 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Kass, R.E., Vos, P.W.: Geometrical Foundations of Asymptotic Inference, vol. 908. Wiley, New York (2011)zbMATHGoogle Scholar
  7. 7.
    Schmid-Saugeon, P., Zakhor, A.: Dictionary design for matching pursuit and application to motion-compensated video coding. IEEE Trans. Circuits Syst. Video Technol. 14(6), 880–886 (2004)CrossRefGoogle Scholar
  8. 8.
    Noyel, G., Angulo, J., Jeulin, D.: Morphological segmentation of hyperspectral images. Image Anal. Stereol 26(3), 101–109 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Saporta, G.: Probabilites, analyse des donnees et statistique. Editions Technip (2011)Google Scholar
  10. 10.
    Fauvel, M.: Spectral and spatial methods for the classification of urban remote sensing data. Doctoral dissertation, Institut National Polytechnique de Grenoble-INPG, Universit d’Islande (2007)Google Scholar
  11. 11.
    Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40(2), 99–121 (2000)CrossRefzbMATHGoogle Scholar
  12. 12.
    Robila, S.: An investigation of spectral metrics in hyperspectral image preprocessing for classification. In: Geospatial Goes Global: From Your Neighborhood to the Whole Planet. ASPRS Annual Conference, Baltimore, Maryland, March 2005Google Scholar
  13. 13.
    Mahalanobis, P.C.: On the generalized distance in statistics. Proc. Nat. Inst. Sci. (Calcutta) 2, 49–55 (1936)zbMATHGoogle Scholar
  14. 14.
    Strapasson, J.E., Porto, J.P., Costa, S.I.: On bounds for the Fisher-Rao distance between multivariate normal distributions. In: MAXENT 2014, vol. 1641, pp. 313–320. AIP Publishing, January 2015Google Scholar
  15. 15.
    Paclik, P., Duin, R.P.: Dissimilarity-based classification of spectra: computational issues. Real-Time Imaging 9(4), 237–244 (2003)CrossRefGoogle Scholar
  16. 16.
    Bengtsson, I., Zyczkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press, Cambridge (2006)CrossRefzbMATHGoogle Scholar
  17. 17.
    Pele, O., Werman, M.: Fast and robust earth mover’s distances. In: 2009 IEEE 12th International Conference Computer Vision, September 2009Google Scholar
  18. 18.
    Gueguen, L., Velasco-Forero, S., Soille, P.: Local mutual information for dissimilarity-based image segmentation. J. Math. Imaging Vis. 48(3), 625–644 (2014)CrossRefzbMATHGoogle Scholar
  19. 19.
    Renyi, A.: On measures of entropy and information. In: Fourth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 547–561 (1961)Google Scholar
  20. 20.
    Meyer, F., Maragos, P.: Nonlinear scale-space representation with morphological levelings. J. Vis. Commun. Image Represent. 11(2), 245–265 (2000)CrossRefGoogle Scholar
  21. 21.
    Soille, P.: Constrained connectivity for hierarchical image partitioning and simplification. IEEE Trans. Pattern Anal. Mach. Intell. 30(7), 1132–1145 (2008)CrossRefGoogle Scholar
  22. 22.
    Franchi, G., Angulo, J. Quantization of hyperspectral image manifold using probabilistic distances. 2015. hal-01121104Google Scholar
  23. 23.
    Bach, F.R., Lanckriet, G.R., Jordan, M.I.: Multiple kernel learning, conic duality, and the SMO algorithm. In: Proceedings of the Twenty-first International Conference on Machine Learning, p. 6. ACM, July 2004Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.MINES ParisTech, CMM-Centre de Morphologie MathématiquePSL-Research UniversityParisFrance

Personalised recommendations