A CBR Approach to Allocate Computational Resources Within a Cloud Platform

  • Fernando De la PrietaEmail author
  • Javier Bajo
  • Juan M. Corchado
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 616)


Cloud Computing paradigm continues growing very quickly. The underlying computational infrastructure has to cope with this increase on the demand and the high number of end-users. To do so, platforms usually use mathematical models to allocate the computational resource among the offered services to the end-user. Although these mathematical models are valid and they are widely extended, they can be improved by means of use intelligent techniques. Thus, this study proposes an innovative approach based on an agent-based system that integrated a case-based reasoning system. This system is able to dynamically allocate resources over a Cloud Computing platform.


Cloud Computing Virtual Machine Multiagent System Service Level Agreement Physical Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been supported by the MICINN project TIN2012-36586-C03-03.


  1. 1.
    Alhamad, M.; Dillon, T.S., Chang, E.: Conceptual SLA framework for cloud computing (2010)Google Scholar
  2. 2.
    Armbrust, M., et al.: A view of cloud computing. Commun. ACM 53(4), 50–58 (2010)Google Scholar
  3. 3.
    Beloglazov, A. Abawajy, J. Buyya, R.: Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing. Future Gener. Comput. Syst. 28(5), 755–768 (2012)Google Scholar
  4. 4.
    Braubach, L., Jander, K. Pokahr, A.: A middleware for managing non-functional requirements in cloud PaaS. In: IEEE International Conference on Cloud and Autonomic Computing (ICCAC), pp. 83–92 (2014)Google Scholar
  5. 5.
    Buyya, R., Beloglazov, A., Abawajy, J.: Energy-efficient management of data center resources for cloud computing: a vision, architectural elements, and open challenges. Preprint arXiv:1006.0308 (2010)
  6. 6.
    Cao, B.-Q., Li, B. Xia, Q.-M.: A service-oriented QoS-assured and multi-agent cloud computing architecture. In: Cloud Computing, pp. 644–649. Springer, Berlin (2009)Google Scholar
  7. 7.
    Che, J., et al.: A synthetical performance evaluation of OpenVZ, Xen and KVM. In: IEEE 2010 Asia-Pacific Services Computing Conference, pp. 587–594. IEEE (2010)Google Scholar
  8. 8.
    Chen, W., et al.: A novel hardware assisted full virtualization technique. In: The 9th International Conference for Young Computer Scientists, pp. 1292–1297. IEEE (2008)Google Scholar
  9. 9.
    Chiu, D.: Elasticity in the cloud. Crossroads 16(3), 3–4 (2010)Google Scholar
  10. 10.
    Corchado, J.M., et al.: Replanning mechanism for deliberative agents in dynamic changing environments. Comput. Intell. 24(2), 77–107 (2008)Google Scholar
  11. 11.
    Corchado, J.M., Laza, R.: Constructing deliberative agents with case‐based reasoning technology. Int. J. Intell. Syst. 18(12), 1227–1241 (2003)Google Scholar
  12. 12.
    Fisher, P., Pant, R., Edberg, J.: Cloud Computing: Assessing Azure, Amazon EC2, Google App Engine and Hadoop for it Decision Making and Developer Career Growth. Apress, New York (2010)Google Scholar
  13. 13.
    Hutchins, D.:Just in time. Gower Publishing Ltd., London (1999)Google Scholar
  14. 14.
    Kang, J. Sim, K.M.: Cloudle: an ontology-enhanced cloud service search engine. In: Web Information Systems Engineering–WISE 2010 Workshops. Springer, Berlin, Heidelberg, pp. 416–427 (2011)Google Scholar
  15. 15.
    Kusic, D., et al.: Power and performance management of virtualized computing environments via lookahead control. Cluster Comput. 12(1), 1–15 (2009)Google Scholar
  16. 16.
    Liu, F., et al.: NIST Cloud Computing Reference Architecture, vol. 500, p. 292. NIST Special Publication (2011)Google Scholar
  17. 17.
    Luo, J.-Z., et al.: Cloud computing: architecture and key technologies. J. China Inst. Commun. 32(7), 3–21 (2011)Google Scholar
  18. 18.
    van Nguyen H., Dang Tran, F. Menaud, J.-M.: Autonomic virtual resource management for service hosting platforms. In: Proceedings of the 2009 ICSE Workshop on Software Engineering Challenges of Cloud Computing, pp. 1–8. IEEE Computer Society (2009)Google Scholar
  19. 19.
    Raghavendra, R., et al.: No power struggles: coordinated multi-level power management for the data center. In: ACM SIGARCH Computer Architecture News, pp. 48–59. ACM, (2008)Google Scholar
  20. 20.
    Sim, K.M.: Agent-based cloud computing. IEEE Trans. Serv. Comput. 5(4), 564–577 (2012)Google Scholar
  21. 21.
    Talia, D.: Cloud computing and software agents: towards cloud intelligent services. In: WOA 2011, pp. 2–6Google Scholar
  22. 22.
    Talia, D.: Clouds meet agents: toward intelligent cloud services. IEEE Internet Comput. 16(2), 78–81 (2012)Google Scholar
  23. 23.
    Van Hien N., Tran, F.D., Menaud, J.-M.: SLA-aware virtual resource management for cloud infrastructures. In: Ninth IEEE International Conference on Computer and Information Technology, CIT’09, pp. 357–362. IEEE (2009)Google Scholar
  24. 24.
    Venticinque, S., et al.: A cloud agency for SLA negotiation and management. In:Euro-Par 2010 Parallel Processing Workshops, pp. 587–594. Springer, Berlin, Heidelberg (2011)Google Scholar
  25. 25.
    Von Laszewski, G., et al.: Comparison of multiple cloud frameworks. In: 2012 IEEE 5th International Conference on Cloud Computing (CLOUD), pp. 734–741. IEEE (2012)Google Scholar
  26. 26.
    Wang, L., et al.: Cloud computing: a perspective study. New Gener. Comput. 28(2), 137–146 (2010)Google Scholar
  27. 27.
    Wei, G., et al.: A game-theoretic method of fair resource allocation for cloud computing services. J. Supercomput. 54(2), 252–269 (2010)Google Scholar
  28. 28.
    Wen, X., et al.: Comparison of open-source cloud management platforms: OpenStack and OpenNebula. In: 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pp. 2457–2461. IEEE (2012)Google Scholar
  29. 29.
    Wooldridge, M., Jennings., N.R.: Intelligent agents: theory and practice. Knowl. Eng. Rev. 10, (02), 115–152 (1995)Google Scholar
  30. 30.
    You, X., et al.: RAS-M: resource allocation strategy based on market mechanism in cloud computing. In: Fourth ChinaGrid Annual Conference, ChinaGrid’09, pp. 256–263. IEEE (2009)Google Scholar
  31. 31.
    Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and research challenges. J. Internet Serv. Appl. 1(1), 7–18 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Fernando De la Prieta
    • 1
    Email author
  • Javier Bajo
    • 2
  • Juan M. Corchado
    • 1
  1. 1.Department of Computer Science and Automation ControlUniversity of SalamancaSalamancaSpain
  2. 2.Department of Artificial Intelligence, TechnicalUniversity of MadridBoadilla del Monte, MadridSpain

Personalised recommendations