BootOX: Practical Mapping of RDBs to OWL 2

  • Ernesto Jiménez-Ruiz
  • Evgeny Kharlamov
  • Dmitriy Zheleznyakov
  • Ian Horrocks
  • Christoph Pinkel
  • Martin G. Skjæveland
  • Evgenij Thorstensen
  • Jose Mora
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9367)


Ontologies have recently became a popular mechanism to expose relational database (RDBs) due to their ability to describe the domain of data in terms of classes and properties that are clear to domain experts. Ontological terms are related to the schema of the underlying databases with the help of mappings, i.e., declarative specifications associating SQL queries to ontological terms. Developing appropriate ontologies and mappings for given RDBs is a challenging and time consuming task. In this work we present BootOX, a system that aims at facilitating ontology and mapping development by their automatic extraction (i.e., bootstrapping) from RDBs, and our experience with the use of BootOX in industrial and research contexts. BootOX has a number of advantages: it allows to control the OWL 2 profile of the output ontologies, bootstrap complex and provenance mappings, which are beyond the W3C direct mapping specification. Moreover, BootOX allows to import pre-existing ontologies via alignment.


Relational Database Domain Ontology Ontology Language Query Answering Database Feature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alalwan, N., et al.: Generating OWL ontology for database integration. In: SEMAPRO (2009)Google Scholar
  2. 2.
    Arenas, M., et al.: Enabling faceted search over OWL 2 with SemFacet. In: OWLED (2014)Google Scholar
  3. 3.
    Arenas, M., et al.: Faceted search over ontology-enhanced RDF data. In: CIKM (2014)Google Scholar
  4. 4.
    Arenas, M., et al.: SemFacet: semantic faceted search over yago. In: WWW (2014)Google Scholar
  5. 5.
    Astrova, I.: Reverse engineering of relational databases to ontologies. In: Bussler, C.J., Davies, J., Fensel, D., Studer, R. (eds.) ESWS 2004. LNCS, vol. 3053, pp. 327–341. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  6. 6.
    Astrova, I.: Rules for mapping SQL relational databases to OWL ontologies. In: MTSR (2007)Google Scholar
  7. 7.
    Bizer, C., et al.: D2RQ-treating non-RDF databases as virtual RDF graphs. In: ISWC Posters (2004)Google Scholar
  8. 8.
    Calvanese, D., et al.: Tractable Reasoning and Efficient Query Answering in Description Logics: The DL-Lite Family. English. JAR 39(3) (2007)Google Scholar
  9. 9.
    Cerbah, F., et al.: Perspectives in ontology learning. In: Ontology Learning from Databases: Some Efficient Methods to Discover Semantic Patterns in Data. AKA / IOS Press. Serie (2012)Google Scholar
  10. 10.
    Civili, C., et al.: Mastro studio: managing ontology-based data access applications. In: PVLDB, vol. 6, no. 12 (2013)Google Scholar
  11. 11.
    Console, M., Mora, J., Rosati, R., Santarelli, V., Savo, D.F.: Effective computation of maximal sound approximations of description logic ontologies. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.) ISWC 2014, Part II. LNCS, vol. 8797, pp. 164–179. Springer, Heidelberg (2014) Google Scholar
  12. 12.
    Curino, C., Orsi, G., Panigati, E., Tanca, L.: Accessing and documenting relational databases through OWL ontologies. In: Andreasen, T., Yager, R.R., Bulskov, H., Christiansen, H., Larsen, H.L. (eds.) FQAS 2009. LNCS, vol. 5822, pp. 431–442. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  13. 13.
    Fisher, M., et al.: Use of OWL and SWRL for semantic relational database translation. In: OWLED (2008)Google Scholar
  14. 14.
    Giese, M., et al.: Optique — Zooming In on Big Data Access. Computer 48(3) (2015)Google Scholar
  15. 15.
    Grau, B.C., et al.: Querying life science ontologies with SemFacet. In: SWAT4LS (2014)Google Scholar
  16. 16.
    He, B., et al.: Accessing the Deep Web. Commun. ACM 50(5) (2007)Google Scholar
  17. 17.
    Horridge, M., et al.: The manchester OWL syntax. In: OWLED (2006)Google Scholar
  18. 18.
    Jiménez-Ruiz, E., et al.: Large-scale interactive ontology matching: algorithms and implementation. In: ECAI (2012)Google Scholar
  19. 19.
    Jiménez-Ruiz, E., Cuenca Grau, B.: LogMap: logic-based and scalable ontology matching. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 273–288. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  20. 20.
    Kharlamov, E., Solomakhina, N., Özçep, Ö.L., Zheleznyakov, D., Hubauer, T., Lamparter, S., Roshchin, M., Soylu, A., Watson, S.: How semantic technologies can enhance data access at siemens energy. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.) ISWC 2014, Part I. LNCS, vol. 8796, pp. 601–619. Springer, Heidelberg (2014) Google Scholar
  21. 21.
    Kharlamov, E., Jiménez-Ruiz, E., Zheleznyakov, D., Bilidas, D., Giese, M., Haase, P., Horrocks, I., Kllapi, H., Koubarakis, M., Özçep, Ö., Rodríguez-Muro, M., Rosati, R., Schmidt, M., Schlatte, R., Soylu, A., Waaler, A.: Optique: towards OBDA systems for industry. In: Cimiano, P., Fernández, M., Lopez, V., Schlobach, S., Völker, J. (eds.) ESWC 2013. LNCS, vol. 7955, pp. 125–140. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  22. 22.
    Kharlamov, E., et al.: Ontology based access to exploration data at statoil. In: ISWC (2015)Google Scholar
  23. 23.
    de Laborda, C.P., et al.: Database to semantic web mapping using RDF query languages. In: ER (2006)Google Scholar
  24. 24.
    Levshin, D.V.: Mapping Relational Databases to the SemanticWeb with Original Meaning. Int. J. Software and Informatics 4(1) (2010)Google Scholar
  25. 25.
    Lubyte, L., Tessaris, S.: Automatic extraction of ontologies wrapping relational data sources. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA 2009. LNCS, vol. 5690, pp. 128–142. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  26. 26.
    de Medeiros, L.F., Priyatna, F., Corcho, O.: MIRROR: automatic R2RML mapping generation from relational databases. In: Cimiano, P., Frasincar, F., Houben, G.-J., Schwabe, D. (eds.) ICWE 2015. LNCS, vol. 9114, pp. 326–343. Springer, Heidelberg (2015) CrossRefGoogle Scholar
  27. 27.
    Motik, B., et al.: Bridging the gap between OWL and relational databases. In: WWW (2007)Google Scholar
  28. 28.
    Motik, B., et al.: Parallel materialisation of datalog programs in centralised, main-memory RDF systems. In: AAAI (2014)Google Scholar
  29. 29.
    Pinkel, C., Binnig, C., Jiménez-Ruiz, E., May, W., Ritze, D., Skjæveland, M.G., Solimando, A., Kharlamov, E.: RODI: a benchmark for automatic mapping generation in relational-to-ontology data integration. In: Gandon, F., Sabou, M., Sack, H., d’Amato, C., Cudré-Mauroux, P., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9088, pp. 21–37. Springer, Heidelberg (2015) CrossRefGoogle Scholar
  30. 30.
    Pinkel, C., et al.: IncMap: pay as you go matching of relational schemata to OWL ontologies. In: OM (2013)Google Scholar
  31. 31.
    Poggi, A., et al.: Linking Data to Ontologies. J. Data Semantics X (2008)Google Scholar
  32. 32.
    Rodriguez-Muro, M., et al.: Efficient SPARQL-to-SQL with R2RML Mappings. J. Web Sem. (to appear, 2015)Google Scholar
  33. 33.
    Sequeda, J., et al.: On directly mapping relational databases to RDF and OWL. In: WWW (2012)Google Scholar
  34. 34.
    Sequeda, J., et al.: Survey of directly mapping SQL databases to the semantic web. Knowledge Eng. Review 26(4) (2011)Google Scholar
  35. 35.
    Sequeda, J., et al.: Ultrawrap: SPARQL Execution on Relational Data. J. Web Sem. 22 (2013)Google Scholar
  36. 36.
    Skjæveland, M.G., et al.: Engineering Ontology-Based Access to Real-World Data Sources. J. Web Sem. (to appear, 2015)Google Scholar
  37. 37.
    Solimando, A., Jiménez-Ruiz, E., Guerrini, G.: Detecting and correcting conservativity principle violations in ontology-to-ontology mappings. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.) ISWC 2014, Part II. LNCS, vol. 8797, pp. 1–16. Springer, Heidelberg (2014) Google Scholar
  38. 38.
    Soylu, A., et al.: Experiencing optiqueVQS: a multi-paradigm and ontology-based visual query system for end users. In: Univ. Access in the Inform. Society (2015)Google Scholar
  39. 39.
    Soylu, A., et al.: OptiqueVQS: towards an ontology-based visual query system for big data. In: MEDES (2013)Google Scholar
  40. 40.
    Soylu, A., Giese, M., Jimenez-Ruiz, E., Kharlamov, E., Zheleznyakov, D., Horrocks, I.: Towards exploiting query history for adaptive ontology-based visual query formulation. In: Closs, S., Studer, R., Garoufallou, E., Sicilia, M.-A. (eds.) MTSR 2014. CCIS, vol. 478, pp. 107–119. Springer, Heidelberg (2014) Google Scholar
  41. 41.
    Spanos, D.-E., et al.: Bringing Relational Databases into the Semantic Web: A Survey. Semantic Web 3(2) (2012)Google Scholar
  42. 42.
    Stefanoni, G., et al.: Answering conjunctive queries over EL knowledge bases with transitive and reflexive roles. In: AAAI (2015)Google Scholar
  43. 43.
    Stoilos, G., Stamou, G., Kollias, S.D.: A string metric for ontology alignment. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 624–637. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  44. 44.
    Stojanovic, L., et al.: Migrating data-intensive web sites into the semantic web. In: SAC (2002)Google Scholar
  45. 45.
    Tao, J., et al.: Integrity constraints in OWL. In: AAAI (2010)Google Scholar
  46. 46.
    Tirmizi, S.H., Sequeda, J., Miranker, D.P.: Translating SQL applications to the semantic web. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA 2008. LNCS, vol. 5181, pp. 450–464. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  47. 47.
    Zhou, Y., et al.: Pay-as-you-go OWL query answering using a triple store. In: AAAI (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ernesto Jiménez-Ruiz
    • 1
  • Evgeny Kharlamov
    • 1
  • Dmitriy Zheleznyakov
    • 1
  • Ian Horrocks
    • 1
  • Christoph Pinkel
    • 2
  • Martin G. Skjæveland
    • 3
  • Evgenij Thorstensen
    • 3
  • Jose Mora
    • 4
  1. 1.Department of Computer ScienceUniversity of OxfordOxfordUK
  2. 2.Fluid Operations AGWalldorfGermany
  3. 3.Department of InformaticsUniversity of OsloOsloNorway
  4. 4.Sapienza Università di RomaRomeItaly

Personalised recommendations