International Semantic Web Conference

The Semantic Web - ISWC 2015 pp 293-300 | Cite as

Provenance-Centered Dataset of Drug-Drug Interactions

  • Juan M. Banda
  • Tobias Kuhn
  • Nigam H. Shah
  • Michel Dumontier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9367)

Abstract

Over the years several studies have demonstrated the ability to identify potential drug-drug interactions via data mining from the literature (MEDLINE), electronic health records, public databases (Drugbank), etc. While each one of these approaches is properly statistically validated, they do not take into consideration the overlap between them as one of their decision making variables. In this paper we present LInked Drug-Drug Interactions (LIDDI), a public nanopublication-based RDF dataset with trusty URIs that encompasses some of the most cited prediction methods and sources to provide researchers a resource for leveraging the work of others into their prediction methods. As one of the main issues to overcome the usage of external resources is their mappings between drug names and identifiers used, we also provide the set of mappings we curated to be able to compare the multiple sources we aggregate in our dataset.

Keywords

Drug-drug interactions Nanopublications Data mining 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avillach, P., Dufour, J.-C., Diallo, G., Salvo, F., Joubert, M., Thiessard, F., Mougin, F., Trifirò, G., Fourrier-Réglat, A., Pariente, A., Fieschi, M.: Design and validation of an automated method to detect known adverse drug reactions in medline: a contribution from the eu–adr project. Journal of the American Medical Informatics Association 20(3), 446–452 (2013)CrossRefGoogle Scholar
  2. 2.
    Banda, J.M., Kuhn, T., Shah, N.H., Dumontier, M.: Liddi: Provenance-centered dataset of drug-drug interactions. figshare July 17, 2015. http://dx.doi.org/10.6084/m9.figshare.1486478
  3. 3.
    Bushardt, R.L., Massey, E.B., Simpson, T.W., Ariail, J.C., Simpson, K.N.: Polypharmacy: Misleading, but manageable. Clinical Interventions in Aging. 3(2), 383–389 (2008). 18686760[pmid] Clin Interv AgingCrossRefGoogle Scholar
  4. 4.
    Callahan, A., Cruz-Toledo, J., Ansell, P., Dumontier, M.: Bio2RDF release 2: improved coverage, interoperability and provenance of life science linked data. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 200–212. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  5. 5.
    Dumontier, M., Baker, C.J., Baran, J., Callahan, A., Chepelev, L.L., Cruz-Toledo, J., Nicholas, R., Rio, D., Duck, G., Furlong, L.I., et al.: The semanticscience integrated ontology (sio) for biomedical research and knowledge discovery. J. Biomedical Semantics 5, 14 (2014)CrossRefGoogle Scholar
  6. 6.
    Gottlieb, A., Stein, G.Y., Oron, Y., Ruppin, E., Sharan, R.: Indi: a computational framework for inferring drug interactions and their associated recommendations. Molecular Systems Biology 8, 592–592 (2012). 22806140[pmid] Mol. Syst. BiolCrossRefGoogle Scholar
  7. 7.
    Groth, P., Gibson, A., Velterop, J.: The anatomy of a nano-publication. Information Services and Use 30(1), 51–56 (2010)Google Scholar
  8. 8.
    Haerian, K., Varn, D., Vaidya, S., Ena, L., Chase, H.S., Friedman, C.: Detection of pharmacovigilance-related adverse events using electronic health records and automated methods. Clinical pharmacology and therapeutics 92(2), 228–234 (2012)CrossRefGoogle Scholar
  9. 9.
    Iyer, S.V., Harpaz, R., LePendu, P., Bauer-Mehren, A., Shah, N.H.: Mining clinical text for signals of adverse drug-drug interactions. J. Am. Med. Inform. Assoc. 21(2), 353–362 (2014)CrossRefGoogle Scholar
  10. 10.
    T. Kuhn, C. Chichester, M. Krauthammer, and M. Dumontier. Publishing without publishers: a decentralized approach to dissemination, retrieval, and archiving of data. In: Proceedings of ISWC 2015. Lecture Notes in Computer Science. Springer (2015)Google Scholar
  11. 11.
    Kuhn, T., Dumontier, M.: Trusty URIs: verifiable, immutable, and permanent digital artifacts for linked data. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 395–410. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  12. 12.
    Kuhn, T., Dumontier, M.: Making digital artifacts on the web verifiable and reliable. IEEE Transactions on Knowledge and Data Engineering (2015)Google Scholar
  13. 13.
    Lazarou, J., Pomeranz, B.H., Corey, P.N.: Incidence of adverse drug reactions in hospitalized patients: A meta-analysis of prospective studies. JAMA 279(15), 1200–1205 (1998). doi:10.1001/jama.279.15.1200 CrossRefGoogle Scholar
  14. 14.
    Lebo, T., et al.: PROV-O: The PROV ontology. Recommendation, W3C (2013)Google Scholar
  15. 15.
    Mons, B., van Haagen, H., Chichester, C., den Dunnen, J.T., van Ommen, G., van Mulligen, E., Singh, B., Hooft, R., Roos, M., Hammond, J., et al.: The value of data. Nature genetics 43(4), 281–283 (2011)CrossRefGoogle Scholar
  16. 16.
    Tatonetti, N.P., Ye, P.P., Daneshjou, R., Altman, R.B.: Data-driven prediction of drug effects and interactions. Science Translational Medicine 4(125), 125ra31 (2012). doi:10.1126/scitranslmed.3003377 CrossRefGoogle Scholar
  17. 17.
    Vilar, S., Uriarte, E., Santana, L., Lorberbaum, T., Hripcsak, G., Friedman, C., Tatonetti, N.P.: Similarity-based modeling in large-scale prediction of drug-drug interactions. Nat. Protocols 9(9), 2147–2163 (2014)CrossRefGoogle Scholar
  18. 18.
    Wishart, D.S., Knox, C., Guo, A.C., Cheng, D., Shrivastava, S., Tzur, D., Gautam, B., Hassanali, M.: Drugbank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Research 36, D901–D906 (2008). 18048412[pmid] Nucleic Acids ResCrossRefGoogle Scholar
  19. 19.
    Zhang, L., Zhang, Y., Zhao, P., Huang, S.-M.: Predicting drugdrug interactions: An fda perspective. The AAPS Journal 11(2), 300–306 (2009)CrossRefGoogle Scholar
  20. 20.
    Linked Drug-Drug Interactions (LIDDI) dataset. Nanopublication index, July 17, 2015. http://np.inn.ac/RA7SuQ0e661LJdKpt5EOS2DKykf1ht9LFmNaZtFSDMrXg

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Juan M. Banda
    • 1
  • Tobias Kuhn
    • 2
    • 3
  • Nigam H. Shah
    • 1
  • Michel Dumontier
    • 1
  1. 1.Stanford University - Center for Biomedical Informatics ResearchStanfordUSA
  2. 2.Department of Humanities, Social and Political SciencesETH ZurichZürichSwitzerland
  3. 3.Department of Computer ScienceVU University AmsterdamAmsterdamNetherlands

Personalised recommendations