Advertisement

LSQ: The Linked SPARQL Queries Dataset

  • Muhammad SaleemEmail author
  • Muhammad Intizar Ali
  • Aidan Hogan
  • Qaiser Mehmood
  • Axel-Cyrille Ngonga Ngomo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9367)

Abstract

We present LSQ: a Linked Dataset describing SPARQL queries extracted from the logs of public SPARQL endpoints. We argue that LSQ has a variety of uses for the SPARQL research community, be it for example to generate custom benchmarks or conduct analyses of SPARQL adoption. We introduce the LSQ data model used to describe SPARQL query executions as RDF. We then provide details on the four SPARQL endpoint logs that we have RDFised thus far. The resulting dataset contains 73 million triples describing 5.7 million query executions.

Keywords

Lorenz Curve British Museum Query Execution SPARQL Query Outgoing Link 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aluç, G., Hartig, O., Özsu, M.T., Daudjee, K.: Diversified stress testing of RDF data management systems. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.) ISWC 2014, Part I. LNCS, vol. 8796, pp. 197–212. Springer, Heidelberg (2014) Google Scholar
  2. 2.
    Buil-Aranda, C., Hogan, A., Umbrich, J., Vandenbussche, P.-Y.: SPARQL web-querying infrastructure: ready for action? In: Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.) ISWC 2013, Part II. LNCS, vol. 8219, pp. 277–293. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  3. 3.
    Arias, M., Fernández, J.D., Martínez-Prieto, M.A., de la Fuente, P.: An empirical study of real-world SPARQL queries. CoRR (2011)Google Scholar
  4. 4.
    Berendt, B., Hollink, L., Hollink, V., Luczak-Rösch, M., Möller, K., Vallet, D.: Usage analysis and the web of data. SIGIR Forum 45(1), 63–69 (2011)CrossRefGoogle Scholar
  5. 5.
    Görlitz, O., Thimm, M., Staab, S.: SPLODGE: systematic generation of SPARQL benchmark queries for linked open data. In: Cudré-Mauroux, P., Heflin, J., Sirin, E., Tudorache, T., Euzenat, J., Hauswirth, M., Parreira, J.X., Hendler, J., Schreiber, G., Bernstein, A., Blomqvist, E. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 116–132. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  6. 6.
    Harris, S., Seaborne, A., Prud’hommeaux, E. (eds.): SPARQL 1.1 Query Language. W3C Recommendation, March 21, 2013Google Scholar
  7. 7.
    Knublauch, H., Hendler, J.A., Idehen, K. (eds.): SPIN - Overview and Motivation. W3C Member Submission, February 22, 2011Google Scholar
  8. 8.
    Lampo, T., Vidal, M.-E., Danilow, J., Ruckhaus, E.: To cache or not to cache: the effects of warming cache in complex SPARQL queries. In: Meersman, R., Dillon, T., Herrero, P., Kumar, A., Reichert, M., Qing, L., Ooi, B.-C., Damiani, E., Schmidt, D.C., White, J., Hauswirth, M., Hitzler, P., Mohania, M. (eds.) OTM 2011, Part II. LNCS, vol. 7045, pp. 716–733. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  9. 9.
    Morsey, M., Lehmann, J., Auer, S., Ngonga Ngomo, A.-C.: DBpedia SPARQL benchmark – performance assessment with real queries on real data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 454–469. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  10. 10.
    Picalausa, F., Vansummeren, S.: What are real SPARQL queries like?. In: SWIM (2011)Google Scholar
  11. 11.
    Rietveld, L., Hoekstra, R.: Man vs. machine: differences in SPARQL queries. In: USEWOD (2014)Google Scholar
  12. 12.
    Saleem, M., Mehmood, Q., Ngomo, A.-C.N.: FEASIBLE: a featured-based SPARQL benchmark generation framework. In: ISWC (2015) (to appear)Google Scholar
  13. 13.
    Saleem, M., Ngonga Ngomo, A.-C.: HiBISCuS: hypergraph-based source selection for SPARQL endpoint federation. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 176–191. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  14. 14.
    Williams, G.T., Weaver, J.: Enabling fine-grained HTTP caching of SPARQL query results. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 762–777. Springer, Heidelberg (2011) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Muhammad Saleem
    • 1
    Email author
  • Muhammad Intizar Ali
    • 2
  • Aidan Hogan
    • 3
  • Qaiser Mehmood
    • 2
  • Axel-Cyrille Ngonga Ngomo
    • 1
  1. 1.Universität Leipzig, IFI/AKSWLeipzigGermany
  2. 2.Insight Center for Data AnalyticsNational University of IrelandGalwayIreland
  3. 3.Department of Computer ScienceUniversidad de ChileSantiagoChile

Personalised recommendations