Advertisement

LinkDaViz – Automatic Binding of Linked Data to Visualizations

  • Klaudia Thellmann
  • Michael Galkin
  • Fabrizio Orlandi
  • Sören Auer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9366)

Abstract

As the Web of Data is growing steadily, the demand for user-friendly means for exploring, analyzing and visualizing Linked Data is also increasing. The key challenge for visualizing Linked Data consists in providing a clear overview of the data and supporting non-technical users in finding suitable visualizations while hiding technical details of Linked Data and visualization configuration. In order to accomplish this, we propose a largely automatic workflow which guides users through the process of creating visualizations by automatically categorizing and binding data to visualization parameters. The approach is based on a heuristic analysis of the structure of the input data and a comprehensive visualization model facilitating the automatic binding between data and visualization parameters. The resulting assignments are ranked and presented to the user. With LinkDaViz we provide a web-based implementation of the approach and demonstrate the feasibility by an extended user and performance evaluation.

Keywords

Data Property Recommendation Algorithm Structural Option Layout Option Input Data Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bikakis, N., Skourla, M., Papastefanatos, G.: rdf:Synopsviz - a framework for hierarchical linked data visual exploration and analysis. In: 11th Extended Semantic Web Conference (ESWC 2014) (2014)Google Scholar
  2. 2.
    Brunetti, J.M., Auer, S., García, R., Klímek, J., Nečaský, M.: Formal linked data visualization model. In: Proc. IIWAS, IIWAS 2013, pp. 309–318. ACM, NY (2013)Google Scholar
  3. 3.
    Burkard, R., Dell’Amico, M., Martello, S.: Assignment Problems, Revised Reprint: Other titles in applied mathematics. Society for Industrial and Applied Mathematics (SIAM) (2009)Google Scholar
  4. 4.
    Dadzie, A.S., Rowe, M.: Approaches to visualising linked data: A survey. Semantic Web 2(2), 89–124 (2011)Google Scholar
  5. 5.
    Höfler, P., Mutlu, B.: Code query wizard and vis wizard: Supporting exploration and analysis of linked data. ERCIM News (96) (2014)Google Scholar
  6. 6.
    Klíme, J., Helmich, J., Nečaský, M.: Payola: collaborative linked data analysis and visualization framework. In: Cimiano, P., Fernández, M., Lopez, V., Schlobach, S., Völker, J. (eds.) ESWC 2013. LNCS, vol. 7955, pp. 147–151. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Munkres, J.: Algorithms for the assignment and transportation problems. Journal of the Society for Industrial and Applied Mathematics 5(1), 32–38 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Mutlu, B., Hoefler, P., Sabol, V., Tschinkel, G., Granitzer, M.: Automated visualization support for linked research data. In: Lohmann, S. (ed.) CEUR Workshop Proceedings, vol. 1026, pp. 40–44. CEUR-WS.org (2013)Google Scholar
  9. 9.
    Nielsen, J., Landauer, T.K.: A mathematical model of the finding of usability problems. In: Proceedings of the INTERACT 1993 and CHI 1993 Conference on Human Factors in Computing Systems, pp. 206–213. ACM (1993)Google Scholar
  10. 10.
    Skjaeveland, M.G.: Sgvizler: a javascript wrapper for easy visualization of sparql result sets. In: Simperl, E., Norton, B., Mladenic, D., Della Valle, E., Fundulaki, I., Passant, A., Troncy, R. (eds.) The Semantic Web: ESWC 2012 Satellite Events, Lecture Notes in Computer Science, vol. 7540, pp. 361–365. Springer, Heidelberg (2015). http://dx.doi.org/10.1007/978-3-662-46641-4_27
  11. 11.
    Stevens, S.S.: On the theory of scales of measurement. Science 103, 677–680 (1946)CrossRefzbMATHGoogle Scholar
  12. 12.
    Stevens, S.S.: Measurement. In: Maranell, G.M. (ed.) Scaling; a Sourcebook for Behavioral Scientists. Aldine Publishing Company (1974)Google Scholar
  13. 13.
    Voigt, M., Pietschmann, S., Grammel, L., Meißner, K.: Context-aware recommendation of visualization components. In: 4th Int. Conf. on Information, Process, and Knowledge Management, eKNOW 2012, pp. 101–109 (2012)Google Scholar
  14. 14.
    Voigt, M., Pietschmann, S., Meißner, K.: A semantics-based, end-user-centered information visualization process for semantic web data. In: Semantic Models for Adaptive Interactive Systems, pp. 83–107. Springer (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Klaudia Thellmann
    • 1
  • Michael Galkin
    • 1
  • Fabrizio Orlandi
    • 1
  • Sören Auer
    • 1
  1. 1.University of Bonn & Fraunhofer IAISBonnGermany

Personalised recommendations