Advertisement

Networks of Linked Data Eddies: An Adaptive Web Query Processing Engine for RDF Data

  • Maribel Acosta
  • Maria-Esther Vidal
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9366)

Abstract

Client-side query processing techniques that rely on the materialization of fragments of the original RDF dataset provide a promising solution for Web query processing. However, because of unexpected data transfers, the traditional optimize-then-execute paradigm, used by existing approaches, is not always applicable in this context, i.e., performance of client-side execution plans can be negatively affected by live conditions where rate at which data arrive from sources changes. We tackle adaptivity for client-side query processing, and present a network of Linked Data Eddies that is able to adjust query execution schedulers to data availability and runtime conditions. Experimental studies suggest that the network of Linked Data Eddies outperforms static Web query schedulers in scenarios with unpredictable transfer delays and data distributions.

Keywords

Query Processing Adaptive Operator Query Execution SPARQL Query Query Plan 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acosta, M., Vidal, M.-E., Lampo, T., Castillo, J., Ruckhaus, E.: ANAPSID: an adaptive query processing engine for SPARQL endpoints. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 18–34. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  2. 2.
    Avnur, R., Hellerstein, J.M.: Eddies: continuously adaptive query processing. In: SIGMOD, pp. 261–272 (2000)Google Scholar
  3. 3.
    Babu, S., Bizarro, P.: Adaptive query processing in the looking glass. In: CIDR, pp. 238–249 (2005)Google Scholar
  4. 4.
    Deshpande, A., Ives, Z.G., Raman, V.: Adaptive query processing. Foundations and Trends in Databases 1(1), 1–140 (2007)CrossRefzbMATHGoogle Scholar
  5. 5.
    Feigenbaum, L., Williams, G., Clark, K., Torres, E.: SPARQL 1.1 protocol (2013)Google Scholar
  6. 6.
    Fundulaki, I., Auer, S.: Linked Open Data - Introduction to the special theme. ERCIM News 2014(96) (2014)Google Scholar
  7. 7.
    Görlitz, O., Staab, S.: SPLENDID: SPARQL endpoint federation exploiting VOID descriptions. In: COLD Workshop (2011)Google Scholar
  8. 8.
    Hartig, O.: Zero-knowledge query planning for an iterator implementation of link traversal based query execution. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 154–169. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  9. 9.
    Hellerstein, J.M., Franklin, M.J., Chandrasekaran, S., Deshpande, A., Hildrum, K., Madden, S., Raman, V., Shah, M.A.: Adaptive query processing: Technology in evolution. IEEE Data Eng. Bull. 23(2), 7–18 (2000)Google Scholar
  10. 10.
    Laddhad, K., Sudarshan, S.: Adaptive query processing. Technical Report 05329014, Kanwal Rekhi School of Information Technology, Indian Institute of Technology, Bombay, Mumbai (2006)Google Scholar
  11. 11.
    Schmachtenberg, M., Bizer, C., Paulheim, H.: Adoption of the linked data best practices in different topical domains. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.) ISWC 2014, Part I. LNCS, vol. 8796, pp. 245–260. Springer, Heidelberg (2014) Google Scholar
  12. 12.
    Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: optimization techniques for federated query processing on linked data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 601–616. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  13. 13.
    Tian, F., DeWitt, D.J.: Tuple routing strategies for distributed eddies. In: VLDB, pp. 333–344 (2003)Google Scholar
  14. 14.
    Tsialiamanis, P., Sidirourgos, L., Fundulaki, I., Christophides, V., Boncz, P.A.: Heuristics-based query optimisation for SPARQL. In: EDBT, pp. 324–335 (2012)Google Scholar
  15. 15.
    Verborgh, R., et al.: Querying datasets on the web with high availability. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.) ISWC 2014, Part I. LNCS, vol. 8796, pp. 180–196. Springer, Heidelberg (2014) Google Scholar
  16. 16.
    Vidal, M.-E., Ruckhaus, E., Lampo, T., Martínez, A., Sierra, J., Polleres, A.: Efficiently joining group patterns in SPARQL queries. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part I. LNCS, vol. 6088, pp. 228–242. Springer, Heidelberg (2010) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute AIFBKarlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Universidad Simón BolívarCaracasVenezuela

Personalised recommendations