Content-Based Recommendations via DBpedia and Freebase: A Case Study in the Music Domain

  • Phuong T. Nguyen
  • Paolo Tomeo
  • Tommaso Di Noia
  • Eugenio Di Sciascio
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9366)


The Web of Data has been introduced as a novel scheme for imposing structured data on the Web. This renders data easily understandable by human beings and seamlessly processable by machines at the same time. The recent boom in Linked Data facilitates a new stream of data-intensive applications that leverage the knowledge available in semantic datasets such as DBpedia and Freebase. These latter are well known encyclopedic collections of data that can be used to feed a content-based recommender system. In this paper we investigate how the choice of one of the two datasets may influence the performance of a recommendation engine not only in terms of precision of the results but also in terms of their diversity and novelty. We tested four different recommendation approaches exploiting both DBpedia and Freebase in the music domain.


Linked open data Quality assessment Semantic similarity Content-based recommender systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tversky, A.: Features of similarity. Psychological Review 84(4), 327–352 (1977)CrossRefGoogle Scholar
  2. 2.
    Di Noia, T., Mirizzi, R., Ostuni, V.C., Romito, D., Zanker, M.: Linked open data to support content-based recommender systems. In: Proc. of I-SEMANTICS 2012, pp. 1–8 (2012)Google Scholar
  3. 3.
    Ostuni, V.C., Di Noia, T., Mirizzi, R., Di Sciascio, E.: A linked data recommender system using a neighborhood-based graph Kernel. In: Hepp, M., Hoffner, Y. (eds.) EC-Web 2014. LNBIP, vol. 188, pp. 89–100. Springer, Heidelberg (2014) Google Scholar
  4. 4.
    Zadeh, P.D.H., Reformat, M.Z.: Fuzzy semantic similarity in linked data using the OWA operator. In: Annual Meeting of the North American Fuzzy Inf. Proc. Society (2012)Google Scholar
  5. 5.
    Cremonesi, P., Koren, Y., Turrin, R.: Performance of recommender algorithms on top-n recommendation tasks. In: Proc. of RecSys10. pp. 39–46 (2010)Google Scholar
  6. 6.
    Nguyen, P.T., Tomeo, P., Di Noia, T., Di Sciascio, E.: An evaluation of SimRank and personalized PageRank to build a recommender system for the web of data. In: 7th International Workshop on Web Intelligence & Communities. ACM (2015)Google Scholar
  7. 7.
    Lops, P., Des Gemmi, M., Semeraro, G.: Recommender Systems Handbook, pp. 73–105. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  8. 8.
    Fernández-Tobías, I., Cantador, I., Kaminskas, M., Ricci., F.: A generic semantic-based framework for cross-domain recommendation. In: Proc. of HetRec 2011, pp. 25–32 (2011)Google Scholar
  9. 9.
    Heitmann, B., Hayes., C.: Using linked data to build open, collaborative recommender systems. In: AAAI Spring Symposium: Linked Data Meets Artificial Intelligence (2010)Google Scholar
  10. 10.
    Lommatzsch, A., Plumbaum, T., Albayrak., S.: A linked dataverse knows better: boosting recommendation quality using semantic knowledge. In: Proc. of SEMAPRO 2011, pp. 97–103 (2011)Google Scholar
  11. 11.
    Marie, N., Corby, O., Gandon, F., Ribière., M.: Composite interests’ exploration thanks to on-the-fly linked data spreading activation. In: Proc. of HT 2013 (2013)Google Scholar
  12. 12.
    Ayala, V.A.A., Przyjaciel-Zablocki, M., Hornung, T., Schätzle, A., Lausen., G.: Extending sparql for recommendations. In: Proc. of SWIM 2014 (2014)Google Scholar
  13. 13.
    Stankovic, M., Breitfuss, W., Laublet., P.: Linked-data based suggestion of relevant topics. In: Proc. of I-Semantics 2011, pp. 49–55 (2011)Google Scholar
  14. 14.
    Khrouf, H., and Troncy., R.: Hybrid event recommendation using linked data and user diversity. In: Proc. of RecSys 2013, pp. 185–192 (2013)Google Scholar
  15. 15.
    Rowe, M.: SemanticSVD++: incorporating semantic taste evolution for predicting ratings. In: Proc. of 2014 IEEE/WIC/ACM WI 2014 (2014)Google Scholar
  16. 16.
    Rowe, M.: Transferring semantic categories with vertex Kernels: recommendations with SemanticSVD++. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.) ISWC 2014, Part I. LNCS, vol. 8796, pp. 341–356. Springer, Heidelberg (2014) Google Scholar
  17. 17.
    Musto, C., Semeraro, G., Lops, P., de Gemmis, M.: Combining distributional semantics and entity linking for context-aware content-based recommendation. In: Dimitrova, V., Kuflik, T., Chin, D., Ricci, F., Dolog, P., Houben, G.-J. (eds.) UMAP 2014. LNCS, vol. 8538, pp. 381–392. Springer, Heidelberg (2014) Google Scholar
  18. 18.
    Dojchinovski, M., Vitvar, T.: Personalised Access to Linked Data. In: Janowicz, K., Schlobach, S., Lambrix, P., Hyvönen, E. (eds.) EKAW 2014. LNCS, vol. 8876, pp. 121–136. Springer, Heidelberg (2014) Google Scholar
  19. 19.
    Ge, M., Delgado-Battenfeld, C., Jannach, D.: Beyond accuracy: evaluating recommender systems by coverage and serendipity. In: Proc. of RecSys 2010, pp. 257–260, ACM (2010)Google Scholar
  20. 20.
    Adomavicius, G., Kwon, Y.: Improving Aggregate Recommendation Diversity Using Ranking-Based Techniques. IEEE TKDE 24(5), 896–911 (2012)Google Scholar
  21. 21.
    Vargas, S., Castells, P.: Improving sales diversity by recommending users to items. In: Proc. of RecSys 2014, pp. 145–152 (2014)Google Scholar
  22. 22.
    Knuth, M., Kontokostas, D., Sack, H.: Linked data quality: identifying and tackling the key challenges. In: Proc. of LDQ@SEMANTiCS (2014)Google Scholar
  23. 23.
    Mendes, P.N., Mühleisen, H., Bizer, C.: Sieve: linked data quality assessment and fusion. In: Proc. of EDBT-ICDT 2012, pp. 116–123. ACM (2012)Google Scholar
  24. 24.
    Ostuni, V.C., Di Noia, T., Di Sciascio, E., Mirizzi, R.: Top-N recommendations from implicit feedback leveraging linked open data. In: Proc. of RecSys 2013 (2013)Google Scholar
  25. 25.
    Celma, O., Herrera, P.: A new approach to evaluating novel recommendations. In: Proc. RecSys 2008. ACM (2008)Google Scholar
  26. 26.
    Lehmann, J., et al.: DBpedia - A large-scale, multilingual knowledge base extracted from Wikipedia. Journal of Semantic Web 6, 167–195 (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Phuong T. Nguyen
    • 1
  • Paolo Tomeo
    • 1
  • Tommaso Di Noia
    • 1
  • Eugenio Di Sciascio
    • 1
  1. 1.SisInf LabPolytechnic University of BariBariItaly

Personalised recommendations