Advertisement

Interest-Based RDF Update Propagation

  • Kemele M. EndrisEmail author
  • Sidra Faisal
  • Fabrizio Orlandi
  • Sören Auer
  • Simon Scerri
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9366)

Abstract

Many LOD datasets, such as DBpedia and LinkedGeoData, are voluminous and process large amounts of requests from diverse applications. Many data products and services rely on full or partial local LOD replications to ensure faster querying and processing. Given the evolving nature of the original and authoritative datasets, to ensure consistent and up-to-date replicas frequent replacements are required at a great cost. In this paper, we introduce an approach for interest-based RDF update propagation, which propagates only interesting parts of updates from the source to the target dataset. Effectively, this enables remote applications to ‘subscribe’ to relevant datasets and consistently reflect the necessary changes locally without the need to frequently replace the entire dataset (or a relevant subset). Our approach is based on a formal definition for graph-pattern-based interest expressions that is used to filter interesting parts of updates from the source. We implement the approach in the iRap framework and perform a comprehensive evaluation based on DBpedia Live updates, to confirm the validity and value of our approach.

Keywords

Change propagation Dataset dynamics Linked data Replication 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Breitbart, Y., Komondoor, R., Rastogi, R., Seshadri, S., Silberschatz, A.: Update propagation protocols for replicated databates. ACM SIGMOD Record 28 (1999)Google Scholar
  3. 3.
    Chirita, P.-A., Idreos, S., Koubarakis, M., Nejdl, W.: Publish/subscribe for RDF-based P2P networks. In: Bussler, C.J., Davies, J., Fensel, D., Studer, R. (eds.) ESWS 2004. LNCS, vol. 3053, pp. 182–197. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  4. 4.
    Marx, E., Shekarpour, S., Auer, S., Ngomo, A.N.: Large-scale RDF dataset slicing. In: 2013 IEEE Seventh International Conference on Semantic Computing, Irvine, CA, USA, pp. 228–235, 16–18 September 2013Google Scholar
  5. 5.
    Tummarello, G., Morbidoni, C., Bachmann-Gmür, R., Erling, O.: RDFSync: efficient remote synchronization of RDF models. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 537–551. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  6. 6.
    Passant, A., Mendes, P.: sparqlPuSH: Proactive notification of data updates in RDF stores using PubSubHubbub. In: Scripting for the Semantic Web Workshop (SFSW2010) (2010)Google Scholar
  7. 7.
    Pellegrino, L., Huet, F., Baude, F., Alshabani, A.: A distributed publish/subscribe system for RDF data. In: Hameurlain, A., Rahayu, W., Taniar, D. (eds.) Globe 2013. LNCS, vol. 8059, pp. 39–50. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  8. 8.
    Popitsch, N., Haslhofer, B.: Dsnotify - a solution for event detection and link maintenance in dynamic datasets. J. Web Sem. 9(3), 266–283 (2011)CrossRefGoogle Scholar
  9. 9.
    Schandl, B.: Replication and versioning of partial RDF graphs. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part I. LNCS, vol. 6088, pp. 31–45. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  10. 10.
    Tramp, S., Frischmuth, P., Ermilov, T., Auer, S.: Weaving a social data web with semantic pingback. In: Cimiano, P., Pinto, H.S. (eds.) EKAW 2010. LNCS, vol. 6317, pp. 135–149. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  11. 11.
    Verborgh, R., Hartig, O., De Meester, B., Haesendonck, G., De Vocht, L., Vander Sande, M., Cyganiak, R., Colpaert, P., Mannens, E., Van de Walle, R.: Querying datasets on the web with high availability. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.) ISWC 2014, Part I. LNCS, vol. 8796, pp. 180–196. Springer, Heidelberg (2014) Google Scholar
  12. 12.
    Voruganti, K., Özsu, M.T., Unrau, R.C.: An adaptive data-shipping architecture for client caching data management systems. Distributed and Parallel Databases 15(2), 137–177 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Kemele M. Endris
    • 1
    Email author
  • Sidra Faisal
    • 1
  • Fabrizio Orlandi
    • 1
  • Sören Auer
    • 1
  • Simon Scerri
    • 1
  1. 1.University of Bonn & Fraunhofer IAISBonnGermany

Personalised recommendations