An Algebra of Qualitative Taxonomical Relations for Ontology Alignments

  • Armen Inants
  • Jérôme Euzenat
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9366)


Algebras of relations were shown useful in managing ontology alignments. They make it possible to aggregate alignments disjunctively or conjunctively and to propagate alignments within a network of ontologies. The previously considered algebra of relations contains taxonomical relations between classes. However, compositional inference using this algebra is sound only if we assume that classes which occur in alignments have nonempty extensions. Moreover, this algebra covers relations only between classes. Here we introduce a new algebra of relations, which, first, solves the limitation of the previous one, and second, incorporates all qualitative taxonomical relations that occur between individuals and concepts, including the relations “is a” and “is not”. We prove that this algebra is coherent with respect to the simple semantics of alignments.


Relation algebra Ontology alignment Network of ontologies 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, J.F.: Maintaining Knowledge About Temporal Intervals. Communications of the ACM 26(11), 832–843 (1983)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bao, J., Caragea, D., Honavar, V.G.: On the Semantics of linking and importing in modular ontologies. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 72–86. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  3. 3.
    Borgida, A., Serani, L.: Distributed description logics: assimilating information from peer sources. Journal of Data Semantics 1, 153–184 (2003)zbMATHGoogle Scholar
  4. 4.
    Düntsch, I.: Relation algebras and their application in temporal and spatial reasoning. Articial Intelligence Review 23(4), 315–357 (2005)CrossRefzbMATHGoogle Scholar
  5. 5.
    Euzenat, J.: Algebras of ontology alignment relations. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 387–402. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  6. 6.
    Euzenat, J., Shvaiko, P.: Ontology Matching, 2nd edn. Springer, Heidelberg (2013)CrossRefzbMATHGoogle Scholar
  7. 7.
    Grau, B.C., Patel-Schneider, P., Motik, B.: OWL 2 Web Ontology Lan- guage Direct Semantics, 2nd edn. W3C Recommendation. W3C, December 2012.
  8. 8.
    Harris, S., Seaborne, A., Prud’hommeaux, E.: SPARQL 1.1 Query Language (2013). W3C Recommendation (2013)Google Scholar
  9. 9.
    Hirsch, R.: Expressive Power and Complexity in Algebraic Logic. J. Log. Comput. 7(3), 309–351 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Homola, M.: Semantic Investigations in Distributed Ontologies. PhD thesis. Bratislava, Slovakia: Comenius University (2010)Google Scholar
  11. 11.
    Jónsson, B., Tarski, A.: Boolean algebras with operators. Part II. American Journal of Mathematics 74, 127–162 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kutz, O., Lutz, C., Wolter, F., Zakharyaschev, M.: E-connections of abstract description systems. Artif. Intell. 156(1), 1–73 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ladkin, P., Maddux, R.D.: On binary constraint problems. Journal of the ACM (JACM) 41(3), 435–469 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Lange, C., Mossakowski, T., Kutz, O., Galinski, C., Grüninger, M., Vale, D.C.: The distributed ontology language (DOL): use cases, syntax, and extensibility. In: Proc. of TKE 2012 (2012)Google Scholar
  15. 15.
    Ligozat, G., Renz, J.: What is a qualitative calculus? a general framework. In: Zhang, C., W. Guesgen, H., Yeap, W.-K. (eds.) PRICAI 2004. LNCS (LNAI), vol. 3157, pp. 53–64. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  16. 16.
    Mackworth, A.K., Freuder, E.C.: The Complexity of Some Polynomial Network Consistency Algorithms for Constraint Satisfaction Problems. Artif. Intell. 25(1), 65–74 (1985)CrossRefGoogle Scholar
  17. 17.
    Maddux, R.D.: Some Varieties Containing Relation Algebras. Trans. Amer. Math. Soc. 272, 501–526 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Tarski, A.: On the Calculus of Relations. J. Symb. Log. 6(3), 73–89 (1941)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Zimmermann, A.: Integrated distributed description logics. In: Proc. of DL 2007, pp. 507–514 (2007)Google Scholar
  20. 20.
    Zimmermann, A.: Logical formalisms for agreement technologies. In: Ossowski, S. (ed.) Agreement Technologies. Law, Governance and Technology Series, vol. 8, pp. 69–82. Springer, Netherlands (2013) CrossRefGoogle Scholar
  21. 21.
    Zimmermann, A., Euzenat, J.: Three semantics for distributed systems and their relations with alignment composition. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 16–29. Springer, Heidelberg (2006) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.InriaUniv. Grenoble AlpesGrenobleFrance

Personalised recommendations