International Symposium on Automated Technology for Verification and Analysis

Automated Technology for Verification and Analysis pp 31-47 | Cite as

Unfolding-Based Process Discovery

  • Hernán Ponce-de-León
  • César Rodríguez
  • Josep Carmona
  • Keijo Heljanko
  • Stefan Haar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9364)


This paper presents a novel technique for process discovery. In contrast to the current trend, which only considers an event log for discovering a process model, we assume two additional inputs: an independence relation on the set of logged activities, and a collection of negative traces. After deriving an intermediate net unfolding from them, we perform a controlled folding giving rise to a Petri net which contains both the input log and all independence-equivalent traces arising from it. Remarkably, the derived Petri net cannot execute any trace from the negative collection. The entire chain of transformations is fully automated. A tool has been developed and experimental results are provided that witness the significance of the contribution of this paper.


  1. 1.
    van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhancement of Business Processes. Springer, New York (2011)MATHGoogle Scholar
  2. 2.
    van der Aalst, W.M.P.: On the representational bias in process mining. In: 20th IEEE International Workshops on Enabling Technologies: Infrastructures for Collaborative Enterprises, WETICE 2011, France, pp. 2–7 (2011)Google Scholar
  3. 3.
    Ferreira, H., Ferreira, D.: An integrated life cycle for workflow management based on learning and planning. Int. J. Coop. Inf. Syst. 15(4), 485–505 (2006)CrossRefGoogle Scholar
  4. 4.
    Lamma, E., Mello, P., Riguzzi, F., Storari, S.: Applying inductive logic programming to process mining. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 132–146. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  5. 5.
    Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust process discovery with artificial negative events. J. Mach. Learn. Res. 10, 1305–1340 (2009)MathSciNetMATHGoogle Scholar
  6. 6.
    Mazurkiewicz, A.W.: Trace theory. In: Petri Nets: Central Models and Their Properties, Advances in Petri Nets 1986, Part II, Proceedings of an Advanced Course, Bad Honnef, pp. 279–324 (1986)Google Scholar
  7. 7.
    Dumas, M., García-Bañuelos, L.: Process mining reloaded: event structures as a unified representation of process models and event logs. In: Devillers, R., Valmari, A. (eds.) PETRI NETS 2015. LNCS, vol. 9115, pp. 33–48. Springer, Heidelberg (2015) CrossRefGoogle Scholar
  8. 8.
    Ponce-de-León, H., Rodríguez, C., Carmona, J., Heljanko, K., Haar, S.: Unfolding-based process discovery. CoRR abs/1507.02744 (2015)Google Scholar
  9. 9.
    Esparza, J., Römer, S., Vogler, W.: An improvement of McMillan’s unfolding algorithm. Formal Methods Syst. Des. 20(3), 285–310 (2002)CrossRefMATHGoogle Scholar
  10. 10.
    Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains, part I. Theor. Comput. Sci. 13, 85–108 (1981)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: Quality dimensions in process discovery: The importance of fitness, precision, generalization and simplicity. Int. J. Coop. Inf. Syst. 23(1), 1–39 (2014)CrossRefGoogle Scholar
  12. 12.
    Winskel, G.: Categories of models for concurrency. In: Brookes, S.D., Roscoe, A.W., Winskel, G. (eds.) Seminar on Concurrency. LNCS. Springer, Heidelberg (1984)Google Scholar
  13. 13.
    Fahland, D., van der Aalst, W.M.P.: Simplifying discovered process models in a controlled manner. Inf. Syst. 38(4), 585–605 (2013)CrossRefGoogle Scholar
  14. 14.
    van den Broucke, S.K.L.M., Weerdt, J.D., Vanthienen, J., Baesens, B.: Determining process model precision and generalization with weighted artificial negative events. IEEE Trans. Knowl. Data Eng. 26(8), 1877–1889 (2014)CrossRefGoogle Scholar
  15. 15.
    Nieuwenhuis, R., Oliveras, A.: On SAT modulo theories and optimization problems. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 156–169. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  16. 16.
    The Model Checking Contest: Website.
  17. 17.
    van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Process discovery using integer linear programming. In: van Hee, K.M., Valk, R. (eds.) PETRI NETS 2008. LNCS, vol. 5062, pp. 368–387. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  18. 18.
    Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F., van der Aalst, W.M.P.: Measuring precision of modeled behavior. Inf. Syst. E-Bus. Manag. 13(1), 37–67 (2015)CrossRefGoogle Scholar
  19. 19.
    Adriansyah, A.: Aligning observed and modeled behavior. Ph.D. thesis, Technische Universiteit Eindhoven (2014)Google Scholar
  20. 20.
    Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Synthesis of petri nets from finite partial languages. Fundam. Inform. 88(4), 437–468 (2008)MathSciNetMATHGoogle Scholar
  21. 21.
    Bergenthum, R., Desel, J., Mauser, S., Lorenz, R.: Construction of process models from example runs. In: Jensen, K., van der Aalst, W.M.P. (eds.) Transactions on Petri Nets and Other Models of Concurrency II. LNCS, vol. 5460, pp. 243–259. Springer, Heidelberg (2009) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Hernán Ponce-de-León
    • 1
  • César Rodríguez
    • 2
  • Josep Carmona
    • 3
  • Keijo Heljanko
    • 1
  • Stefan Haar
    • 4
  1. 1.Helsinki Institute for Information Technology HIIT and Department of Computer Science, School of ScienceAalto UniversityEspooFinland
  2. 2.Sorbonne Paris Cité, LIPN, CNRSUniversité Paris 13VilletaneuseFrance
  3. 3.Universitat Politècnica de CatalunyaBarcelonaSpain
  4. 4.INRIA and LSVÉcole Normale Supérieure de Cachan and CNRSCachanFrance

Personalised recommendations