Fast Brain MRI Registration with Automatic Landmark Detection Using a Single Template Image

  • Olga V. SenyukovaEmail author
  • Denis S. Zobnin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9358)


Automatic registration of brain MR images is still a challenging problem. We have chosen an approach based on landmarks matching. However, manual landmarking of the images is cumbersome. Existing algorithms for automatic identification of pre-defined set of landmarks usually require manually landmarked training bases. We propose the registration algorithm that involves automatic detection of landmarks with the use of only one manually landmarked template image. Landmarks are detected using Canny edge detector and point descriptors. Evaluation of four types of descriptors showed that SURF provides the best trade-off between speed and accuracy. Thin plate spline transformation is used for landmark-based registration. The proposed algorithm was compared with the best existing registration algorithm without the use of local features. Our algorithm showed significant speed-up and better accuracy in matching of anatomical structures surrounded by the landmarks. All the experiments were performed on the IBSR database.



The authors would like to thank Alexey V. Petraikin, M.D. from Pirogov Russian National Research Medical University (RNRMU) for valuable discussion.


  1. 1.
    Insight segmentation and registration toolkit (ITK).
  2. 2.
    Internet brain segmentation repository.
  3. 3.
    Andersson, J., Smith, S., Jenkinson, M.: FNIRT – FMRIB’s non-linear image registration tool. Human Brain Mapping. Poster 496 (2008)Google Scholar
  4. 4.
    Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12(1), 26–41 (2008)CrossRefGoogle Scholar
  5. 5.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)CrossRefGoogle Scholar
  6. 6.
    Cabezas, M., Oliver, A., Llad, X., et al.: A review of atlas-based segmentation for magnetic resonance brain images. Comput. Methods Programs Biomed. 104(3), e158–e177 (2011)CrossRefGoogle Scholar
  7. 7.
    Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)CrossRefGoogle Scholar
  8. 8.
    Collins, D.L., Evans, A.C.: ANIMAL: validation and applications of nonlinear registration-based segmentation. Int. J. Pattern Recognit Artif Intell. 11(8), 1271–1294 (1997)CrossRefGoogle Scholar
  9. 9.
    Davis, M.H., Khotanzad, A., Flamig, D.P., Harms, S.E.: A physics-based coordinate transformation for 3-D image matching. IEEE Trans. Med. Imaging 16(3), 317–328 (1997)CrossRefGoogle Scholar
  10. 10.
    Diez, Y., Gubern-Mérida, A., Wang, L., Diekmann, S., Martí, J., Platel, B., Kramme, J., Martí, R.: Comparison of methods for current-to-prior registration of breast DCE-MRI. In: Fujita, H., Hara, T., Muramatsu, C. (eds.) IWDM 2014. LNCS, vol. 8539, pp. 689–695. Springer, Heidelberg (2014) Google Scholar
  11. 11.
    Evans, A.C., Dai, W., Collins, L., et al.: Warping of a computerized 3-D atlas to match brain image volumes for quantitative neuroanatomical and functional analysis. In: Proceedings SPIE, pp. 236–246. SPIE Press, Bellingham (1991)Google Scholar
  12. 12.
    Guerrero, R., Pizarro, L., Wolz, R., Rueckert, D.: Landmark localization in brain mr images using feature point descriptors based on 3D local self-similarities. In: 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 1535–1538. IEEE Press, New York (2012)Google Scholar
  13. 13.
    Han, D., Gao, Y., Wu, G., Yap, P.-T., Shen, D.: Robust anatomical landmark detection for MR brain image registration. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part I. LNCS, vol. 8673, pp. 186–193. Springer, Heidelberg (2014) Google Scholar
  14. 14.
    Klein, A., Andersson, J., Ardekani, A.B., et al.: Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage 46(3), 786–802 (2009)CrossRefGoogle Scholar
  15. 15.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)CrossRefGoogle Scholar
  17. 17.
    Pluim, J.P.W., Maintz, J.B.A., Viergever, M.A.: Mutual-information-based registration of medical images: a survey. IEEE Trans. Med. Imaging 22(8), 986–1004 (2003)CrossRefGoogle Scholar
  18. 18.
    Rohr, K., Stiehl, H.S., Sprengel, R., et al.: Landmark-based elastic registration using approximating thin-plate splines. IEEE Trans. Med. Imaging 20(6), 526–534 (2001)CrossRefGoogle Scholar
  19. 19.
    Shechtman, E., Irani, M.: Matching local self-similarities across images and videos. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8. IEEE Press, New York (2007)Google Scholar
  20. 20.
    Shen, D.: Fast image registration by hierarchical soft correspondence detection. Pattern Recogn. 42(5), 954–961 (2009)CrossRefGoogle Scholar
  21. 21.
    Smith, S.M., Jenkinson, M., Woolrich, M.W., et al.: Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(1), 208–219 (2004)CrossRefGoogle Scholar
  22. 22.
    Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Non-parametric diffeomorphic image registration with the demons algorithm. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 319–326. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  23. 23.
    Wu, G., Kim, M., Wang, Q., Shen, D.: S-HAMMER: hierarchical attribute-guided, symmetric diffeomorphic registration for MR brain images. Hum. Brain Mapp. 35(3), 1044–1060 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (, which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  1. 1.Faculty of Computational Mathematics and CyberneticsLomonosov Moscow State UniversityMoscowRussian Federation

Personalised recommendations