TomoGC: Binary Tomography by Constrained GraphCuts

  • Jörg Hendrik Kappes
  • Stefania Petra
  • Christoph Schnörr
  • Matthias Zisler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9358)


We present an iterative reconstruction algorithm for binary tomography, called TomoGC, that solves the reconstruction problem based on a constrained graphical model by a sequence of graphcuts. TomoGC reconstructs objects even if a low number of measurements are only given, which enables shorter observation periods and lower radiation doses in industrial and medical applications. We additionally suggest some modifications of established methods that improve state-of-the-art methods. A comprehensive numerical evaluation demonstrates that the proposed method can reconstruct objects from a small number of projections more accurate and also faster than competitive methods.



Financial support of our research work by the DFG, grant GRK 1653. is gratefully acknowledged.


  1. 1.
    van Aarle, W., Palenstijn, W.J., Beenhouwer, J.D., Altantzis, T., Bals, S., Batenburg, K.J., Sijbers, J.: The ASTRA-toolbox: a platform for advanced algorithm development in electron tomography. Ultramicroscopy (2015)Google Scholar
  2. 2.
    Batenburg, K.J.: A network flow algorithm for reconstructing binary images from continuous x-rays. J. Math. Imaging Vis. 30(3), 231–248 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Batenburg, K.J., Sijbers, J.: Generic iterative subset algorithms for discrete tomography. Discrete Appl. Math. 157(3), 438–451 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Batenburg, K.J., Sijbers, J.: DART: a practical reconstruction algorithm for discrete tomography. IEEE Trans. Image Process. 20(9), 2542–2553 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38(3), 367–426 (1996)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bleichrodt, F., Tabak, F., Batenburg, K.J.: SDART: an algorithm for discrete tomography from noisy projections. Comput. Vis. Image Underst. 129, 63–74 (2014)CrossRefGoogle Scholar
  7. 7.
    Bracewell, R.N., Riddle, A.C.: Inversion of fan-beam scans in radio astronomy. Astron. J. 150(2), 427–434 (1967)CrossRefGoogle Scholar
  8. 8.
    Capricelli, T., Combettes, P.: A convex programming algorithm for noisy discrete tomography. In: Advances in Discrete Tomography and its Applications. Birkhäuser, Boston (2007)Google Scholar
  9. 9.
    Cegielski, A.: Iterative Methods for Fixed Point Problems in Hilbert Spaces. Lecture Notes in Mathematics, vol. 2057. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Censor, Y.: Row-action methods for huge and sparse systems and their applications. SIAM Rev. 23(4), 444–466 (1981)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Censor, Y., Zenios, S.: Parallel Optimization: Theory, Algorithms, and Applications. Oxford University Press, New York (1997) zbMATHGoogle Scholar
  12. 12.
    Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Chambolle, A.: Total variation minimization and a class of binary MRF models. In: Rangarajan, A., Vemuri, B.C., Yuille, A.L. (eds.) EMMCVPR 2005. LNCS, vol. 3757, pp. 136–152. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  14. 14.
    Combettes, P.: Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 53(5–6), 475–504 (2004)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Denitiu, A., Petra, S., Schnörr, C., Schnörr, C.: Phase transitions and cosparse tomographic recovery of compound solid bodies from few projections. Fundamenta Informaticae 135, 73–102 (2014)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Gorelick, L., Schmidt, F.R., Boykov, Y.: Fast trust region for segmentation. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June, 2013, pp. 1714–1721 (2013)Google Scholar
  17. 17.
    Goris, B., Van den Broek, W., Batenburg, K., Mezerji, H., Bals, S.: Electron tomography based on a total variation minimization reconstruction techniques. Ultramicroscopy 113, 120–130 (2012)CrossRefGoogle Scholar
  18. 18.
    Gouillart, E., Krzakala, F., Mezard, M., Zdeborova, L.: Belief-propagation reconstruction for discrete tomography. Inverse Prob. 29(3), 035003 (2013)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Gregor, J., Benson, T.: Computational analysis and improvement of SIRT. IEEE Trans. Med. Imaging 27(7), 918–924 (2008)CrossRefGoogle Scholar
  20. 20.
    Gustavsson, E., Patriksson, M., Strömberg, A.B.: Primal convergence from dual subgradient methods for convex optimization. Math. Program. 150(2), 365–390 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Hanke, R., Fuchs, T., Uhlmann, N.: X-ray based methods for non-destructive testing and material characterization. Nucl. Instrum. Meth. Phys. Res. Sect. A: Accelerators, Spectrometers, Detectors Associated Equipment 591(1), 14–18 (2008). Radiation Imaging Detectors 2007 Proceedings of the 9th International Workshop on Radiation Imaging DetectorsCrossRefGoogle Scholar
  22. 22.
    Kiwiel, K.C.: Proximity control in bundle methods for convex nondifferentiable minimization. Math. Program. 46, 105–122 (1990)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kolmogorov, V., Zabin, R.: What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 147–159 (2004)CrossRefGoogle Scholar
  24. 24.
    Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimization. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1568–1583 (2006)CrossRefGoogle Scholar
  25. 25.
    Kolmogorov, V., Rother, C.: Minimizing nonsubmodular functions with graph cuts-a review. IEEE Trans. Pattern Anal. Mach. Intell. 29(7), 1274–1279 (2007)CrossRefGoogle Scholar
  26. 26.
    Komodakis, N., Paragios, N., Tziritas, G.: MRF energy minimization and beyond via dual decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 531–552 (2011)CrossRefGoogle Scholar
  27. 27.
    Lim, Y., Jung, K., Kohli, P.: Efficient energy minimization for enforcing label statistics. IEEE Trans. Pattern Anal. Mach. Intell. 36(9), 1893–1899 (2014)CrossRefGoogle Scholar
  28. 28.
    Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1(3), 1–108 (2013)Google Scholar
  29. 29.
    Smith-Bindman, R., Lipson, J., Marcus, R., et al.: Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch. Intern. Med. 169(22), 2078–2086 (2009)CrossRefGoogle Scholar
  30. 30.
    Raj, A., Singh, G., Zabih, R.: MRF’s for MRI’s: Bayesian reconstruction of MR images via graph cuts. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), New York, NY, USA, 17–22 June 2006, pp. 1061–1068 (2006)Google Scholar
  31. 31.
    Sidky, E.Y., Jakob, H., Jörgensen, J.H., Pan, X.: Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle-Pock algorithm. Phys. Med. Biol. 57(10), 3065 (2012)CrossRefGoogle Scholar
  32. 32.
    Storath, M., Weinmann, A., Frikel, J., Unser, M.: Joint image reconstruction and segmentation using the Potts model. Inverse Prob. 31(2), 025003 (2015)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Tang, M., Ben Ayed, I., Boykov, Y.: Pseudo-bound optimization for binary energies. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part V. LNCS, vol. 8693, pp. 691–707. Springer, Heidelberg (2014) Google Scholar
  34. 34.
    Tuysuzoglu, A., Karl, W., Stojanovic, I., Castanon, D., Unlu, M.: Graph-cut based discrete-valued image reconstruction. IEEE Trans. Image Process. 24(5), 1614–1627 (2015)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Weber, S., Nagy, A., Schüle, T., Schnörr, C., Kuba, A.: A benchmark evaluation of large-scale optimization approaches to binary tomography. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 146–156. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  36. 36.
    Weber, S., Schnörr, C., Hornegger, J.: A linear programming relaxation for binary tomography with smoothness priors. Electron. Notes Discrete Math. 12, 243–254 (2003)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Xiao, L., Johansson, M., Boyd, S.: Simultaneous routing and resource allocation via dual decomposition. IEEE Trans. Commun. 52(7), 1136–1144 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (, which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • Jörg Hendrik Kappes
    • 1
  • Stefania Petra
    • 1
  • Christoph Schnörr
    • 1
  • Matthias Zisler
    • 1
  1. 1.Heidelberg UniversityHeidelbergGermany

Personalised recommendations