Advertisement

An Efficient Linearisation Approach for Variational Perspective Shape from Shading

  • Daniel Maurer
  • Yong Chul Ju
  • Michael Breuß
  • Andrés Bruhn
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9358)

Abstract

Recently, variational methods have become increasingly more popular for perspective shape from shading due to their robustness under noise and missing information. So far, however, due to the strong nonlinearity of the data term, existing numerical schemes for minimising the corresponding energy functionals were restricted to simple explicit schemes that require thousands or even millions of iterations to provide accurate results. In this paper we tackle the problem by proposing an efficient linearisation approach for the recent variational model of Ju et al. [14]. By embedding such a linearisation in a coarse-to-fine Gauß-Newton scheme, we show that we can reduce the runtime by more than three orders of magnitude without degrading the quality of results. Hence, it is not only possible to apply variational methods for perspective SfS to significantly larger image sizes. Our approach also allows a practical choice of the regularisation parameter so that noise can be suppressed efficiently at the same time.

Notes

Acknowledgements

This work has been partly funded by the Deutsche Forschungsgemeinschaft (BR 2245/3-1, BR 4372/1-1).

References

  1. 1.
    Abdelrahim, A.S., Abdelrahman, M.A., Abdelmunim, H., Farag, A., Miller, M.: Novel image-based 3D reconstruction of the human jaw using shape from shading and feature descriptors. In: Proceedings of the British Machine Vision Conference, pp. 1–11 (2011)Google Scholar
  2. 2.
    Abdelrahim, A.S., Abdelmunim, H., Graham, J., Farag, A.: Novel variational approach for the perspective shape from shading problem using calibrated images. In: Proceedings of the IEEE International Conference on Image Processing, pp. 2563–2566 (2013)Google Scholar
  3. 3.
    Barron, J.T., Malik, J.: Shape, illumination, and reflectance from shading. IEEE Trans. Pattern Anal. Mach. Intell. 37(8), 1670–1687 (2015)CrossRefGoogle Scholar
  4. 4.
    Bors, A.G., Hancock, E.R., Wilson, R.C.: Terrain analysis using radar shape-from-shading. IEEE Trans. Pattern Anal. Mach. Intell. 25, 974–992 (2003)CrossRefGoogle Scholar
  5. 5.
    Breuß, M., Cristiani, E., Durou, J.-D., Falcone, M., Vogel, O.: Perspective shape from shading: ambiguity analysis and numerical approximations. SIAM J. Imaging Sci. 5(1), 311–342 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J.G. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  7. 7.
    Charbonnier, P., Blanc-Féraud, L., Aubert, G., Barlaud, M.: Deterministic edge-preserving regularization in computed imaging. IEEE Trans. Image Process. 6(2), 298–311 (1997)CrossRefGoogle Scholar
  8. 8.
    Courteille, F., Crouzil, A., Durou, J.-D., Gurdjos, P.: Towards shape from shading under realistic photographic conditions. In: Proceedings of the IEEE International Conference on Pattern Recognition, pp. 277–280 (2004)Google Scholar
  9. 9.
    Fassold, H., Danzl, R., Schindler, K., Bischof, H.: Reconstruction of archaeological finds using shape from stereo and shape from shading. In: Proceedings of the Computer Vision Winter Workshop, pp. 21–30 (2004)Google Scholar
  10. 10.
    Gelfand, I.M., Fomin, S.V.: Calculus of Variations. Dover, New York (2000) zbMATHGoogle Scholar
  11. 11.
    Horn, B.K.P.: Shape from shading: a method for obtaining the shape of a smooth opaque object from one view. Ph.D. thesis, Department of Electrical Engineering, MIT, Cambridge, Massachusetts, USA (1970)Google Scholar
  12. 12.
    Ikeuchi, K., Horn, B.K.P.: Numerical shape from shading and occluding boundaries. Artif. Intell. 17(1–3), 141–184 (1981)CrossRefGoogle Scholar
  13. 13.
    Ju, Y.C., Bruhn, A., Breuß, M.: Variational perspective shape from shading. In: Aujol, J.-F., Nikolova, M., Papadakis, N. (eds.) SSVM 2015. LNCS, vol. 9087, pp. 538–550. Springer, Heidelberg (2015) Google Scholar
  14. 14.
    Ju, Y.C., Maurer, D., Breuß, M., Bruhn, A.: Direct variational perspective shape from shading with Cartesian depth parametrisation. In: Perspectives in Shape Analysis, Mathematics and Visualization. Springer (2015, to appear)Google Scholar
  15. 15.
    Kimmel, R., Sethian, J.A.: Optimal algorithm for shape from shading and path planning. J. Math. Imaging Vis. 14(3), 237–244 (2001)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Lee, K.M., Kuo, C.-C.J.: Shape from shading with a generalized reflectance map model. Comput. Vis. Image Underst. 67, 143–160 (1997)CrossRefGoogle Scholar
  17. 17.
    Nayar, S.K.: Shape recovery methods for visual inspection. In: Proceedings of the IEEE Workshop on Applications in Computer Vision, pp. 136–145 (1992)Google Scholar
  18. 18.
    Okatani, T., Deguchi, K.: Shape reconstruction from an endoscope image by shape from shading technique for a point light source at the projection center. Comput. Vis. Image Underst. 66, 119–131 (1997)CrossRefGoogle Scholar
  19. 19.
    Oren, M., Nayar, S.: Generalization of the Lambertian model and implications for machine vision. Int. J. Comput. Vis. 14(3), 227–251 (1995)CrossRefGoogle Scholar
  20. 20.
    Pentland, A.: Shape information from shading: a theory about human perception. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 404–413 (1988)Google Scholar
  21. 21.
    Phong, B.T.: Illumination for computer-generated pictures. Commun. ACM 18(6), 311–317 (1975)CrossRefGoogle Scholar
  22. 22.
    Prados, E., Faugeras, O.: “Perspective shape from shading” and viscosity solutions. In: Proceedings of the IEEE International Conference Computer Vision, pp. 826–831 (2003)Google Scholar
  23. 23.
    Prados, E., Faugeras, O.: Shape from shading: a well-posed problem? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 870–877 (2005)Google Scholar
  24. 24.
    Rindfleisch, T.: Photometric method for lunar topography. Photogram. Eng. 32(2), 262–277 (1966)Google Scholar
  25. 25.
    Rouy, E., Tourin, A.: A viscosity solution approach to shape-from-shading. SIAM J. Numer. Anal. 29(3), 867–884 (1992)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Sethian, J.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  27. 27.
    Tankus, A., Sochen, N., Yeshurun, Y.: Shape-from-shading under perspective projection. Int. J. Comput. Vis. 63(1), 21–43 (2005)CrossRefGoogle Scholar
  28. 28.
    Tsai, P.-S., Shah, M.: Shape from shading using linear approximation. Image Vis. Comput. 12(8), 487–498 (1994)CrossRefGoogle Scholar
  29. 29.
    Vogel, O., Bruhn, A., Weickert, J., Didas, S.: Direct shape-from-shading with adaptive higher order regularisation. In: Sgallari, F., Murli, A., Paragios, N. (eds.) SSVM 2007. LNCS, vol. 4485, pp. 871–882. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  30. 30.
    Vogel, O., Breuß, M., Leichtweis, T., Weickert, J.: Fast shape from shading for Phong-type surfaces. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 733–744. Springer, Heidelberg (2009)Google Scholar
  31. 31.
    Wu, C., Narasimhan, S., Jaramaz, B.: A multi-image shape-from-shading framework for near-lighting perspective endoscopes. Int. J. Comput. Vis. 86, 211–228 (2010)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Zhang, L., Yip, A.M., Tan, C.T.: Shape from shading based on Lax-Friedrichs fast sweeping and regularization techniques with applications to document image restoration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • Daniel Maurer
    • 1
  • Yong Chul Ju
    • 1
  • Michael Breuß
    • 2
  • Andrés Bruhn
    • 1
  1. 1.Institute for Visualization and Interactive SystemsUniversity of StuttgartStuttgartGermany
  2. 2.Applied Mathematics and Computer Vision GroupBrandenburg University of Technology Cottbus-SenftenbergCottbusGermany

Personalised recommendations