Silicification in the Microalgae

Chapter
Part of the Developments in Applied Phycology book series (DAPH, volume 6)

Abstract

Silicon (Si) is incorporated in species from most of the biological kingdoms. In this review we focus on what is known about: Si accumulation and the formation of siliceous structures in microalgae and some related non-photosynthetic groups, molecular and genetic mechanisms controlling silicification in the microalgae, and the potential costs and benefits associated with silicification in the microalgae.

Keywords

Biomineralization Diatoms Microalgae Silicon Silicification 

References

  1. Adl SM, Simpson AGB, Lane CE, Lukeš J, Bass D, Bowser SS, Brown MW, Burki F, Dunthorn M, Hampl V, Heiss A, Hoppenrath M, Lara E, le Gall L, Lynn DH, McManus H, Mitchell EAD, Mozley-Stanridge SE, Parfrey LW, Pawlowski J, Rueckert S, Shadwick L, Schoch CL, Smirnov A, Spiegel FW (2012) The revised classification of eukaryotes. J Eukaryot Microbiol 59:429–514PubMedPubMedCentralCrossRefGoogle Scholar
  2. Allison CW (1981) Siliceous microfossils from the Lower Cambrian of Northwest Canada: possible source for biogenic chert. Science 211:53–55PubMedCrossRefGoogle Scholar
  3. Allison CW, Hilgert JW (1986) Scale microfossils from the Early Cambrian of northwest Canada. J Paleont 60:973–1015Google Scholar
  4. Alverson AJ (2007) Strong purifying selection in the silicon transporters of marine and freshwater diatoms. Limnol Oceanogr 52:1420CrossRefGoogle Scholar
  5. Anderson RA (1987) Synurophyceae classis nov: a new class of algae. Am J Bot 74:337–353CrossRefGoogle Scholar
  6. Anderson OR (1990) Effects of silicate deficiency on test morphology, cytoplasmic fine structure, and growth of the testate amoeba Netzelia tuberculata (Wallich) Netzel (Rhizopoda, Testacea) grown in laboratory culture. Arch Protistenk 138:17–27CrossRefGoogle Scholar
  7. Anderson OR, Cowling AJ (1994) The fine structure of the euglyphid testate amoeba Assulina muscorum (Rhizopoda: Euglyphidae) with observations of growth rate in culture, morphometries, and siliceous scale deposition. Eur J Protistol 30:451–461CrossRefGoogle Scholar
  8. Annenkov VV, Basharina TN, Danilovtseva EN, Grachev MA (2013) Putative silicon transport vesicles in the cytoplasm of the diatom Synedra acus during surge uptake of silicon. Protoplasma 250:1147–1155PubMedCrossRefGoogle Scholar
  9. Ariztia EV, Andersen RA, Sogin ML (1991) A new phylogeny for Chromophyte algae using 16S‐like rRNA sequence from Mallomoas papillosa (Synurophyceae) and Tribonema aequale (Xanthophycae). J Phycol 27:428–436CrossRefGoogle Scholar
  10. Baines SB, Twining BS, Brzezinski MA, Krause JW, Vogt S, Assael D, McDaniel H (2012) Significant silicon accumulation by marine picocyanobacteria. Nat Geosci 5:886–891CrossRefGoogle Scholar
  11. Bell GR (1961) Penetration of spines from a marine diatom into the gill tissue of lingcod (Ophiodon elongatus). Nature 192:279–280CrossRefGoogle Scholar
  12. Bold H, Wynne M (1978) Introduction to the algae: structure and reproduction. Prentice Hall, PrincetonGoogle Scholar
  13. Booth BC, Marchant HJ (1987) Parmales, a new order of marine chrysophytes, with descriptions of three new genera and seven new species. J Phycol 23:245–260CrossRefGoogle Scholar
  14. Borowitzka MA (2016) Systematics, taxonomy and species names: do they matter? In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 655–681CrossRefGoogle Scholar
  15. Borowitzka MA, Volcani BE (1978) The polymorphic diatom Phaeodactylum tricornutum: ultrastructure of its morphotypes. J Phycol 14:10–21CrossRefGoogle Scholar
  16. Brunner E, Richthammer P, Ehrlich H, Paasch S, Simon P, Ueberlein S, van Pée KH (2009) Chitin‐based organic networks: an integral part of cell wall biosilica in the diatom Thalassiosira pseudonana. Angew Chem Int Ed 48:9724–9727CrossRefGoogle Scholar
  17. Brzezinski MA (1992) Cell-cycle effects on the kinetics of silicic acid uptake and resource competition among diatoms. J Plankton Res 14:1511–1539CrossRefGoogle Scholar
  18. Brzezinski MA, Olson RJ, Chisholm SW (1990) Silicon availability and cell-cycle progression in marine diatoms. Mar Ecol Prog Ser 67:83–96CrossRefGoogle Scholar
  19. Bursa A (1969) Actiniscus canadensis n. sp., A. pentasterias Ehrenberg v. arcticus n. var., Pseudactiniscus pentasterias n. gen., n. sp., marine relicts in Canadian Arctic Lakes. J Protozool 16:411–418CrossRefGoogle Scholar
  20. Chapman DV, Dodge JD, Heaney SI (1982) Cyst formation in the freshwater dinoflagellate Ceratium hirundinella (Dinophyceae). J Phycol 18:121–129CrossRefGoogle Scholar
  21. Curnow P, Senior L, Knight MJ, Thamatrakoln K, Hildebrand M, Booth PJ (2012) Expression, purification, and reconstitution of a diatom silicon transporter. Biochemistry 51:3776–3785PubMedCrossRefGoogle Scholar
  22. Daugbjerg N, Guillou L (2001) Phylogenetic analyses of Bolidophyceae (Heterokontophyta) using rbcL gene sequences support their sister group relationship to diatoms. Phycologia 40:153–161CrossRefGoogle Scholar
  23. Davidson AT, Bramich D, Marchant HJ, McMinn A (1994) Effects of UV-B irradiation on growth and survival of Antarctic marine diatoms. Mar Biol 119:507–515CrossRefGoogle Scholar
  24. De La Rocha C, Passow U (2004) Recovery of Thalassiosira weissflogii from nitrogen and silicon starvation. Limnol Oceanogr 49:245–255CrossRefGoogle Scholar
  25. De Stefano L, De Stefano M, Maddalena P, Moretti L, Rea I, Mocella V, Rendina I (2007) Playing with light in diatoms: small water organisms with a natural photonic crystal structure. Proc SPIE Photon Mater Devices Appl II 6593:659313. doi:10.1117/12.723987 Google Scholar
  26. Durkin CA, Mock T, Armbrust EV (2009) Chitin in diatoms and its association with the cell wall. Eukaryot Cell 8:1038–1050PubMedPubMedCentralCrossRefGoogle Scholar
  27. El-Bestawy E, Bellinger EG, Sigee DC (1996) Elemental composition of phytoplankton in a subtropical lake: X-ray microanalytical studies on the dominant algae Spirulina platensis (Cyanophyta) and Cyclotella meneghiniana (Bacillariophyceae). Eur J Phycol 31:157–166CrossRefGoogle Scholar
  28. Eren J (1969) Cyst formation in Peridinium cinctum. J Protozool 16(S4):35Google Scholar
  29. Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor FJR (2004) The evolution of modern eukaryotic phytoplankton. Science 305:354–360PubMedCrossRefGoogle Scholar
  30. Finkel ZV, Kotrc B (2010) Silica use through time: macroevolutionary change in the morphology of the diatom frustule. Geomicrobiol J 27:596–608CrossRefGoogle Scholar
  31. Finkel Z, Matheson K, Regan K, Irwin A (2010) Genotypic and phenotypic variation in diatom silicification under paleo-oceanographic conditions. Geobiology 8:433–445PubMedCrossRefGoogle Scholar
  32. Fu FF, Akagi T, Yabuki S, Iwaki M, Ogura N (2000) Distribution of rare earth elements in seaweed: implication of two different sources of rare earth elements and silicon in seaweed. J Phycol 36:62–70CrossRefGoogle Scholar
  33. Fuhrman JA, Chisholm SW, Guillard RRL (1978) Marine alga Platymonas sp. accumulates silicon without apparent requirement. Nature 272:244–246CrossRefGoogle Scholar
  34. Fuhrmann T, Landwehr S, El Rharbi-Kucki M, Sumper M (2004) Diatoms as living photonic crystals. Appl Phys B 78:257–260CrossRefGoogle Scholar
  35. Grachev M, Sherbakova T, Masyukova Y, Likhoshway Y (2005) A potential zinc-binding motif in silicic acid transport proteins of diatoms. Diatom Res 20:409–411CrossRefGoogle Scholar
  36. Green JC, Hibberd DJ, Pienaar RN (1982) The taxonomy of Prymnesium (Prymnesiophyceae) including a description of a new cosmopolitan species, P. patellifera sp. nov., and further observations on P. parvum N. Carter. Br Phycol J 17:363–382CrossRefGoogle Scholar
  37. Guillou L (2011) Characterization of the Parmales: much more than the resolution of a taxonomic enigma. J Phycol 47:2–4CrossRefGoogle Scholar
  38. Guiry MD, Guiry, GM (2015) AlgaeBase. National University of Ireland. Retrieved from http://www.algaebase.org on 10 February 2015
  39. Hale MS, Mitchell JG (2001) Functional morphology of diatom frustule microstructures: hydrodynamic control of Brownian particle diffusion and advection. Aquat Microb Ecol 24:287–295CrossRefGoogle Scholar
  40. Hale MS, Mitchell JG (2002) Effects of particle size, flow velocity, and cell surface microtopography on the motion of submicrometer particles over diatoms. Nano Lett 2:657–663CrossRefGoogle Scholar
  41. Hamm CE, Smetacek V (2007) Armour: why, when and how. In: Falkowksi PG, Knoll AH (eds) Evolution of aquatic photoautotrophs. Academic, San Diego, pp 311–332Google Scholar
  42. Hansen G (1993) Light and electron microscopical observations of the dinoflagellate Actiniscus pentasterias (Dinophyceae). J Phycol 29:486–499CrossRefGoogle Scholar
  43. Hargraves PE (2002) The ebrian flagellates Ebria and Hermesinum. Plankton Biol Ecol 49:9–16Google Scholar
  44. Harper HEJ, Knoll AH (1975) Silica, diatoms, and Cenozoic radiolarian evolution. Geology 3:175–177CrossRefGoogle Scholar
  45. Hildebrand M (2003) Biological processing of nanostructured silica in diatoms. Prog Org Coat 47:256–266CrossRefGoogle Scholar
  46. Hildebrand M, Volcani BE, Gassmann W, Schroeder JI (1997) A gene family of silicon transporters. Nature 385:688PubMedCrossRefGoogle Scholar
  47. Hirota R, Hata Y, Ikeda T, Ishida Y, Kuroda A (2010) The silicon layer supports acid resistance of Bacillus cereus spores. J Bacteriol 192:111–116PubMedPubMedCentralCrossRefGoogle Scholar
  48. Ichinomiya M, Yoshikawa S, Kamiya M, Ohki K, Takaichi S, Kuwata A (2011) Isolation and characterization of Parmales (Heterokonta/Herterokontophyta/Stramenopiles) from the Oyashio region, Western North Pacific. J Phycol 47:144–151CrossRefGoogle Scholar
  49. Katz ME, Finkel ZV, Gryzebek D, Knoll AH, Falkowski PG (2004) Eucaryotic phytoplankton: evolutionary trajectories and global biogeochemical cycles. Ann Rev Ecol Evol Syst 35:523–556CrossRefGoogle Scholar
  50. Kitchen JC, Zaneveld RV (1992) A three-layer sphere model of the optical properties of phytoplankton. Limnol Oceanogr 37:1680–1690CrossRefGoogle Scholar
  51. Knoll AH (1992) The early evolution of eukaryotes: a geological perspective. Science 256:622–627PubMedCrossRefGoogle Scholar
  52. Knoll AH (2003) Biomineralizatin and evolutionary history. Rev Mineral Geochem 54:329–356CrossRefGoogle Scholar
  53. Knoll AH, Summons RE, Waldbauer JR, Zumberge JE (2007) The geological succession of primary producers in the oceans. In: Falkowksi PG, Knoll AH (eds) Evolution of primary producers in the sea. Elsevier, Amsterdam, pp 133–163CrossRefGoogle Scholar
  54. Krienitz L, Peschke T, Giering B (1990) Lichtmikroskopische, rasterelektronenmikroskopische und röntgenmikroanalytische untersuchungen an Hemitonia maeandrocystis Skuja (Chlorophyta, Phacotaceae). Arch Protistenk 138:159–170CrossRefGoogle Scholar
  55. Krivtsov V, Bellinger EG, Sigee DC (2005) Elemental composition of Microcystis aeruginosa under conditions of lake nutrient depletion. Aquat Ecol 39:123–134CrossRefGoogle Scholar
  56. Kröger N, Wetherbee R (2000) Pleuralins are involved in theca differentiation in the diatom Cylindrotheca fusiformis. Protist 151:263–273PubMedCrossRefGoogle Scholar
  57. Kröger N, Bergsdorf C, Sumper M (1996) Frustulins: domain conservation in a protein family associated with diatom cell walls. Eur J Biochem 239:259–264PubMedCrossRefGoogle Scholar
  58. Kröger N, Deutzmann R, Sumper M (1999) Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286:1129–1132PubMedCrossRefGoogle Scholar
  59. Kröger N, Deutzmann R, Bergsdorf C, Sumper M (2000) Species-specific polyamines from diatoms control silica morphology. Proc Nat Acad Sci 97:14133–14138PubMedPubMedCentralCrossRefGoogle Scholar
  60. Kröger N, Lorenz S, Brunner E, Sumper M (2002) Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis. Science 298:584–586PubMedCrossRefGoogle Scholar
  61. Lazarus DB, Kotrc B, Wulf G, Schmidt DN (2009) Radiolarians decreased silicification as an evolutionary response to reduced Cenozoic ocean silica availability. Proc Natl Acad Sci U S A 106:9333–9338PubMedPubMedCentralCrossRefGoogle Scholar
  62. Leadbeater B, Barker DN (1995) Biomineralization and scale production in the Chrysophyta. In: Sandgren CD, Smol JP, Kristiansen J (eds) Chrysophyte algae: ecology, phylogeny and development. Cambridge University Press, Cambridge, pp 141–164CrossRefGoogle Scholar
  63. Li C-W, Volcani B (1984) Aspects of silicification in wall morphogenesis of diatoms. Phil Trans Roy Soc London B 304:519–528CrossRefGoogle Scholar
  64. Likhoshway YV, Masyukova YA, Sherbakova T, Petrova D, Grachev M (2006) Detection of the gene responsible for silicic acid transport in chrysophycean algae. Doklady Biol Sci 408:256–260CrossRefGoogle Scholar
  65. Lipps JH (1970) Ecology and evolution of silicoflagellates. In: Proceedings of the North American Paleontological Convention, The Paleontological Society Special Publication, Chicago, 2:965–993Google Scholar
  66. Loeblich A III, Loeblich LA (1984) Dinoflagellate cysts. In: Spector D (ed) Dinoflagellates. Academic, New York, pp 443–480CrossRefGoogle Scholar
  67. Lovejoy C, Massana R, Pedrós-Alió C (2006) Diversity and distribution of marine microbial eukaryotes in the Arctic Ocean and adjacent seas. Appl Environ Microbiol 72:3085–3095PubMedPubMedCentralCrossRefGoogle Scholar
  68. Manton I, Parke M (1960) Further observations on small green flagellates with special reference to possible relatives of Chromulina pusilla Butcher. J Mar Biol Assoc UK 39:275–298CrossRefGoogle Scholar
  69. Marron AO, Alston MJ, Heavens D, Akam M, Caccamo M, Holland PW, Walker G (2013) A family of diatom-like silicon transporters in the siliceous loricate choanoflagellates. Proc Roy Soc B 280:20122543CrossRefGoogle Scholar
  70. Meisterfeld R (2002) Testate amoebae with filopodia. In: Lee JJ, Leedate GF, Bradbury P (eds) The illustrated guide to teh Protozoa, vol 2. Society of Protozoologists, Lawrence, pp 1054–1084Google Scholar
  71. Milligan AJ, Morel FMM (2002) A proton buffering role for silica in diatoms. Science 297:1848–1850PubMedCrossRefGoogle Scholar
  72. Millington WF, Gawlik SR (1967) Silica in the wall of Pediastrum. Nature 216:68–68PubMedCrossRefGoogle Scholar
  73. Mitchell JG, Seuront L, Doubell MJ, Losic D, Voelcker NH, Seymour J, Lal R (2013) The role of diatom nanostructures in biasing diffusion to improve uptake in a patchy nutrient environment. PLoS One 8(5):e59548PubMedPubMedCentralCrossRefGoogle Scholar
  74. Mizuta H, Yasui H (2012) Protective function of silicon deposition in Saccharina japonica sporophytes (Phaeophyceae). J Appl Phycol 24:1177–1182PubMedPubMedCentralCrossRefGoogle Scholar
  75. Mock T, Samanta MP, Iverson V, Berthiaume C, Robison M, Holtermann K, Durkin C, Splinter BonDurant S, Richmond K, Rodesch M, Kallas T, Huttlin EL, Cerrina F, Sussman MR, Armbrust EV (2008) Whole-genome expression profiling of the marine diatom Thalassiosira pseudonana identifies genes involved in silicon bio-processes. Proc Natl Acad Sci U S A 105:1579–1584PubMedPubMedCentralCrossRefGoogle Scholar
  76. Moestrup Ø, Thomsen HA (1990) Dictyocha speculum (Siliflagellatea, Dictyochyceae), studies on armoured and unarmoured stages. Biol Skr 37:1–57Google Scholar
  77. Moore LF, Traquair JA (1976) Silicon, a required nutrient for Cladophora glomerata (L) Kütz. (Chlorophyta). Planta 128:179–182PubMedCrossRefGoogle Scholar
  78. Nelson DM, Riedel GF, Millan-Nunez R, Lara-Lara JR (1984) Silicon uptake by algae with no known Si requirement. I. True cellular uptake and pH -induced precipitation by Phaeodactylum tricornutum (Bacillariophyceae) and Platymonas sp. (Prasinophyceae). J Phycol 20:140–147CrossRefGoogle Scholar
  79. Ogden C (1979) An ultrastructural study of division in Euglypha (Protozoa: Rhizopoda). Protistologica 15:541–556Google Scholar
  80. Ota S, Eikrem W, Edvardsen B (2012) Ultrastructure and molecular phylogeny of Thaumatomonads (Cercozoa) with emphasis on Thaumatomastix salina from Oslofjorden, Norway. Protist 163:560–573PubMedCrossRefGoogle Scholar
  81. Parker BC (1969) Occurrence of silica in brown and green algae. Can J Bot 6:37–46Google Scholar
  82. Perch-Nielsen K (1978) Eocene to Pliocene archaeomonads, ebridians, and endoskeletal dinoflagellates from the Norwegian Sea, DSDP Leg 38. Initial Rep Deep Sea Drill Proj 38:147–175Google Scholar
  83. Poll WH, Vrieling EG, Gieskes WW (1999) Location and expression of frustulins in the pennate diatoms Cylindrotheca fusiformis, Navicula pelliculosa, and Navicula salinarum (Bacillariophyceae). J Phycol 35:1044–1053CrossRefGoogle Scholar
  84. Pondaven P, Gallinari M, Chollet S, Bucciarelli E, Sarthou G, Schultes S, Jean F (2007) Grazing-induced changes in cell wall silicification in a marine diatom. Protist 158:21–28PubMedCrossRefGoogle Scholar
  85. Porter S (2011) The rise of predators. Geology 39:607–608CrossRefGoogle Scholar
  86. Porter SM, Knoll AH (2009) Testate amoebae in the Neoproterozoic Era: evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon. Paleobiology 26:360–385CrossRefGoogle Scholar
  87. Porter SM, Meisterfeld R, Knoll AH (2003) Vase-shaped microfossils from the Neoproterozoic Chuar Group, Grand Canyon: a classification guided by modern testate amoebae. J Paleont 77:409–429CrossRefGoogle Scholar
  88. Poulsen N, Scheffel A, Sheppard VC, Chesley PM, Kroger N (2013) Penatlysine clusters mediate silica targeting of silaffins in Thalassiosira pseudonana. J Biol Chem. 288:20100-20109Google Scholar
  89. Preisig HR (1994) Siliceous structures and silicification in flagellated protists. Protoplasma 181:29–42CrossRefGoogle Scholar
  90. Racki G, Cordey F (2000) Radiolarian paleoecology and radiolarites: is the present the key to the past? Earth Sci Rev 52:83–120CrossRefGoogle Scholar
  91. Raven JA, Waite AM (2004) The evolution of silicification in diatoms: inescapable sinking and sinking as escape? New Phytol 162:45–61CrossRefGoogle Scholar
  92. Round FE, Crawford RM, Mann DG (1990) The Diatoms: biology and morphology of the genera. Cambridge University Press, CambridgeGoogle Scholar
  93. Sandgren CD (1989) SEM investigations of statospore (stomatocyst) development in diverse members of the Chrysophyceae and Synurophyceae. Nova Hedwigia Beih 95:45–69Google Scholar
  94. Sandgren CD, Smol JP, Kristiansen J (1995) Chrysophyte algae: ecology, phylogeny and development. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  95. Sandgren CD, Hall SA, Barlow SB (1996) Siliceous scale production in Chrysophyte and Synurophyte algae. 1. Effects of silica-limited growth on cell silica content, scale morphology, and the construction of the scale layer of Synura petersenii. J Phycol 32:675–692CrossRefGoogle Scholar
  96. Santos J, Almeida SF, Figueira E (2013) Cadmium chelation by frustulins: a novel metal tolerance mechanism in Nitzschia palea (Kützing) W. Smith Ecotoxicol 22:166–173CrossRefGoogle Scholar
  97. Sapriel G, Quinet M, Heijde M, Jourdren L, Tanty V, Luo G, Le Crom S, Lopez PJ (2009) Genome-wide transcriptome analyses of silicon metabolism in Phaeodactylum tricornutum reveal the multilevel regulation of silicic acid transporters. PLoS One 4(10):e7458PubMedPubMedCentralCrossRefGoogle Scholar
  98. Scheffel A, Poulsen N, Shian S, Kröger N (2011) Nanopatterned protein microrings from a diatom that direct silica morphogenesis. Proc Natl Acad Sci 108:3175–3180PubMedPubMedCentralCrossRefGoogle Scholar
  99. Schwarz K (1973) A bound form of silicon in glycosaminoglycans and polyuronides. Proc Natl Acad Sci 70:1608–1612PubMedPubMedCentralCrossRefGoogle Scholar
  100. Scott FJ, Marchant HJ (2005) Antarctic marine protists. Australian Biological Resources Study, HobartGoogle Scholar
  101. Sherbakova T, Masyukova YA, Safonova T, Petrova D, Vereshagin A, Minaeva T, Adelshin R, Triboy T, Stonik I, Aizdaitcher N (2005) Conserved motif CMLD in silicic acid transport proteins of diatoms. Mol Biol 39:269–280CrossRefGoogle Scholar
  102. Shrestha R, Tesson B, Norden-Krichmar T, Federowicz S, Hildebrand M, Allen A (2012) Whole transcriptome analysis of the silicon response of the diatom Thalassiosira pseudonana. BMC Genomics 13(1):499PubMedPubMedCentralCrossRefGoogle Scholar
  103. Sigee DC, Holland R (1997) Elemental composition, correlations, and ratios within a population of Stuarastrum planctonicum (Zygnematales): an x-ray microanalytical study. J Phycol 33:182–190CrossRefGoogle Scholar
  104. Sigee DC, Levado E (2000) Cell surface elemental composition of Microcystis aeruginosa: high-Si and low-Si subpopulations within the water column of a eutrophic lake. J Plankton Res 22:2137–2153CrossRefGoogle Scholar
  105. Sigee DC, Levado E, Dodwell AJ (1999) Elemental composition of depth samples of Ceratium hirundinella (Pyrrophyta) within a stratified lake: an X-ray microanalytical study. Aquat Microb Ecol 19:177–187CrossRefGoogle Scholar
  106. Simpson TL, Volcani BE (1981) Introduction. In: Simpson TL, Volcani BE (eds) Silicon and siliceous structures in biological systems. Springer, New York, p 587Google Scholar
  107. Smetacek VS (1985) Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance. Mar Biol 84:239–251CrossRefGoogle Scholar
  108. Tappan HN (1980) The paleobiology of plant protists. Freeman W.H, San FranciscoGoogle Scholar
  109. Tatewaki M, Mizuno M (1979) Growth inhibition by germanium dioxide in various algae, especially in brown algae. Jpn J Phycol 27:205–212Google Scholar
  110. Tesson B, Hildebrand M (2010) Extensive and intimate association of the cytoskeleton with forming silica in diatoms: control over patterning on the meso-and micro-scale. PLoS One 5(12):e14300PubMedPubMedCentralCrossRefGoogle Scholar
  111. Tesson B, Hildebrand M (2013) Characterization and localization of insoluble organic matrices associated with diatom cell walls: insight into their roles during cell wall formation. PLoS One 8(4):e61675PubMedPubMedCentralCrossRefGoogle Scholar
  112. Thamatrakoln K, Hildebrand M (2005) Approaches for functional characterization of diatom silicic acid transporters. J Nanosci Nanotech 5:158–166CrossRefGoogle Scholar
  113. Thamatrakoln K, Hildebrand M (2007) Analysis of Thalassiosira pseudonana silicon transporters indicates distinct regulatory levels and transport activity throught the cell cycle. Eukaryot Cell 6:271–279PubMedPubMedCentralCrossRefGoogle Scholar
  114. Thamatrakoln K, Alverson AJ, Hildebrand M (2006) Comparative sequence analysis of diatom silicon transporters: towards a mechanistic model of silicon transport. J Phycol 42:822–834CrossRefGoogle Scholar
  115. Thomsen HA, Moestrup O (1985) Is Distephanus speculum a fish killer? A report on an unusual agal bloom from Danish coastal waters. Bull Mar Sci 37:778Google Scholar
  116. van Tol HM, Irwin AJ, Finkel ZV (2012) Macroevolutionary trends in silicoflagellate skeletal morphology: the costs and benefits of silicification. Paleobiology 38:391–402CrossRefGoogle Scholar
  117. Van Valkenburg SD, Norris RE (1970) The growth and morphology of the silicoflagellate Dictyocha fibula Ehrenberg in culture. J Phycol 6:48–54Google Scholar
  118. Vrieling EG, Gieskes W, Beelen TP (1999) Silicon deposition in diatoms: control by the pH inside the silicon deposition vesicle. J Phycol 35:548–559CrossRefGoogle Scholar
  119. Vrieling EG, Sun Q, Tian M, Kooyman PJ, Gieskes WW, van Santen RA, Sommerdijk NA (2007) Salinity-dependent diatom biosilicification implies an important role of external ionic strength. Proc Natl Acad Sci 104:10441–10446PubMedPubMedCentralCrossRefGoogle Scholar
  120. Wenzl S, Hett R, Richthammer P, Sumper M (2008) Silacidins: highly acidic phosphopeptides from diatom shells assist in silica precipitation in vitro. Angew Chem 120:1753–1756CrossRefGoogle Scholar
  121. Williams RJP (1981) Natural selection of the chemical elements. Proc R Soc Lond B 213:361–397CrossRefGoogle Scholar
  122. Wylezich C, Mylnikov AP, Weitere M, Arndt H (2007) Freshwater thaumatomonads as common amoeboid heterotrophic flagellates: their phylogenetic relationships and description of the new species Thaumatomonas coloniensis n. sp. J Eukaryot Microbiol 54:347–357PubMedCrossRefGoogle Scholar
  123. Yoshida M, Noel MH, Nakayama T, Naganuma T, Inouye I (2006) A Haptophyte bearing siliceous scales: ultrastructure and phylogenetic position of Hyalolithus neolepis gen. et sp. nov. (Prymnesiophyceae, Haptophyta). Protist 157:213–234PubMedCrossRefGoogle Scholar
  124. Zurzolo C, Bowler C (2001) Exploring bioinorganic pattern formation in diatoms. A story of polarized trafficking. Plant Physiol 127:1339–1345PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Environmental Science ProgramMount Allison UniversitySackvilleCanada

Personalised recommendations