Advertisement

Personalized Therapy of Small Cell Lung Cancer

  • Bryan J. Schneider
  • Gregory P. KalemkerianEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 890)

Abstract

Small cell lung cancer (SCLC) is an aggressive, poorly differentiated neuroendocrine carcinoma with distinct clinical, pathological and molecular characteristics. Despite robust responses to initial chemotherapy and radiation, the prognosis of patients with SCLC remains poor with an overall 5-year survival rate of less than 10 %. Despite the fact that numerous molecularly targeted approaches have thus far failed to demonstrate clinical utility in SCLC, further advances will rely on better definition of the biological pathways that drive survival, proliferation and metastasis. Recent next-generation, molecular profiling studies have identified many new therapeutic targets in SCLC, as well as extreme genomic instability which explains the high degree of resistance. A wide variety of anti-angiogenic agents, growth factor inhibitors, pro-apoptotic agents, and epigenetic modulators have been evaluated in SCLC and many studies of these strategies are on-going. Perhaps the most promising approaches involve agents targeting cancer stem cell pathways and immunomodulatory drugs that interfere with the PD1 and CTLA-4 pathways. SCLC offers many barriers to the development of successful therapy, including limited tumor samples, inadequate preclinical models, high mutational burden, and aggressive tumor growth which impairs functional status and hampers enrollment on clinical trials.

Keywords

Lung cancer Small cell Targeted therapy Immunotherapy Genetic profiling 

References

  1. 1.
    Pesch B, Kendzia B, Gustavsson P et al (2012) Cigarette smoking and lung cancer: relative risk estimates for the major histological types from a pooled analysis of case-control studies. Int J Cancer 131:1210–1219PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Churg A (1994) Lung cancer cell type and occupational exposure. In: Samet JM (ed) Epidemiology of lung cancer. Marcel Dekker, New York, pp 413–436Google Scholar
  3. 3.
    Navada S, Lai P, Schwartz AG, Kalemkerian GP (2006) Temporal trends in small cell lung cancer: analysis of the national surveillance, epidemiology, and end-results database. J Clin Oncol 24(18S):384sGoogle Scholar
  4. 4.
    Govindan R, Page N, Morgensztern D et al (2006) Changing epidemiology of small-cell lung cancer in the United States over the last 30 years: analysis of the surveillance, epidemiologic, and end-results database. J Clin Oncol 24:4539–4544PubMedCrossRefGoogle Scholar
  5. 5.
    Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics, 2014. CA Cancer J Clin 64:9–19PubMedCrossRefGoogle Scholar
  6. 6.
    Zelen M (1973) Keynote address on biostatistics and data retrieval. Cancer Chemother Rep 3 4:31–42PubMedGoogle Scholar
  7. 7.
    Goldstraw P, Crowley JJ, Chansky K et al (2007) The IASLC lung cancer staging project: proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM classification for malignant tumors. J Thorac Oncol 2:706–714PubMedCrossRefGoogle Scholar
  8. 8.
    Shepherd FA, Crowley J, Van Houtte P et al (2007) The IASLC lung cancer staging project: proposals regarding the clinical staging of smallcell lung cancer in the forthcoming (seventh) edition of the tumor, node, metastasis classification for lung cancer. J Thorac Oncol 2:1067–1077PubMedCrossRefGoogle Scholar
  9. 9.
    Pignon JP, Arriagada R, Ihde DC et al (1992) A meta-analysis of thoracic radiotherapy for small-cell lung cancer. N Engl J Med 327:1618–1624PubMedCrossRefGoogle Scholar
  10. 10.
    Warde P, Payne D (1992) Does thoracic irradiation improve survival and local control in limited-stage small-cell carcinoma of the lung? A meta-analysis. J Clin Oncol 10:890–895PubMedGoogle Scholar
  11. 11.
    Fried DB, Morris DE, Poole C et al (2004) Systematic review evaluating the timing of thoracic radiation therapy in combined modality therapy for limited-stage small cell lung cancer. J Clin Oncol 22:4785–4793CrossRefGoogle Scholar
  12. 12.
    Turrisi AT, Kim K, Blum R et al (1999) Twice-daily compared with once-daily thoracic radiotherapy in limited small-cell lung cancer treated concurrently with cisplatin and etoposide. N Engl J Med 340:265–271PubMedCrossRefGoogle Scholar
  13. 13.
    Auperin A, Arriagada R, Pignon JP et al (1999) Prophylactic cranial irradiation for patients with small-cell lung cancer in complete remission. N Engl J Med 341:476–484PubMedCrossRefGoogle Scholar
  14. 14.
    Slotman B, Faivre-Finn C, Kramer G et al (2007) Prophylactic cranial irradiation in extensive small-cell lung cancer. N Engl J Med 357:664–672PubMedCrossRefGoogle Scholar
  15. 15.
    Hanna NH, Einhorn LH (2002) Small-cell lung cancer: state of the art. Clin Lung Cancer 4:87–94PubMedCrossRefGoogle Scholar
  16. 16.
    Von Pawel J, Schiller JH, Shepherd FA et al (1999) Topotecan versus cyclophosphamide, doxorubicin, and vincristine for the treatment of recurrent small-cell lung cancer. J Clin Oncol 17:658–667Google Scholar
  17. 17.
    O’Brien MER, Ciuleanu TE, Tsekov H et al (2006) Phase III trial comparing supportive care alone with supportive care with oral topotecan in patients with relapsed small-cell lung cancer. J Clin Oncol 24:5441–5447PubMedCrossRefGoogle Scholar
  18. 18.
    Chute JP, Chen T, Feigal E et al (1999) Twenty years of phase III trials for patients with extensive-stage small-cell lung cancer: perceptible progress. J Clin Oncol 17:1794–1801PubMedGoogle Scholar
  19. 19.
    Gazdar AF, Minna JD (1996) NCI series of cell lines: an historical perspective. J Cell Biochem 24(suppl):1–11CrossRefGoogle Scholar
  20. 20.
    Kalemkerian GP, Mabry M (1993) Cellular and molecular biology of small-cell lung cancer. In: Roth JA, Cox JD, Hong WK (eds) Lung cancer. Blackwell Scientific, Boston, pp 57–84Google Scholar
  21. 21.
    Naylor SL, Johnson BE, Minna JD, Sakaguchi AY (1987) Loss of heterozygosity of chromosome 3p markers in small-cell lung cancer. Nature 329:451–454PubMedCrossRefGoogle Scholar
  22. 22.
    Hensel CH, Hsieh CL, Gazdar AF et al (1990) Altered structure and expression of the human retinoblastoma susceptibility gene in small cell lung cancer. Cancer Res 50:3067–3072PubMedGoogle Scholar
  23. 23.
    D'Amico D, Carbone D, Mitsudomi T et al (1992) High frequency of somatically acquired p53 mutations in small-cell lung cancer cell lines and tumors. Oncogene 7:339–346PubMedGoogle Scholar
  24. 24.
    Johnson BE, Ihde DC, Makuch RW et al (1987) myc family oncogene amplification in tumor cell lines established from small cell lung cancer patients and its relationship to clinical status and course. J Clin Invest 79:1629–1634PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Kalemkerian GP (2000) Host-tumor interactions: growth factors. In: Pass HI, Mitchell JB, Johnson DH, Turrisi AT, Minna JD (eds) Lung cancer: principles and practice, 2nd edn. Lippincott Williams & Wilkins, Philadelphia, pp 181–198Google Scholar
  26. 26.
    Kelley MJ, Linnoila RI, Avis IL et al (1997) Antitumor activity of a monoclonal antibody directed against gastrin-releasing peptide in patients with small cell lung cancer. Chest 112:256–261PubMedCrossRefGoogle Scholar
  27. 27.
    Peifer M, Fernandez-Cuesta L, Sos ML et al (2012) Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nature Genet 44:1104–1110PubMedCrossRefGoogle Scholar
  28. 28.
    Rudin CM, Durnick S, Stawiski EW et al (2012) Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nature Genet 44:1111–1116PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Byers LA, Wang J, Nilsson MB et al (2012) Proteomic profiling identifies dysregulated pathways in small cell lung cancer and novel therapeutic targets including PARP1. Cancer Discov 2:798–811PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Sos ML, Dietlein F, Peifer M et al (2012) A framework for identification of actionable cancer genome dependencies in small cell lung cancer. Proc Natl Acad Sci U S A 109:17034–17039PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Hou JM, Krebs MG, Lancashire L et al (2012) Clinical significance and molecular characteristics of circulating tumor cells and circulating microemboli in patients with small-cell lung cancer. J Clin Oncol 30:525–532PubMedCrossRefGoogle Scholar
  32. 32.
    Lucchi M, Mussi A, Fontanini G et al (2002) Small cell lung carcinoma (SCLC): the angiogenic phenomenon. Eur J Cardiothorac Surg 21:1105–1110PubMedCrossRefGoogle Scholar
  33. 33.
    Tanno S, Ohsaki Y, Nakanishi K et al (2000) Human small cell lung cancer cells express functional VEGF receptors, VEGFR-2 and VEGFR-3. Lung Cancer 46:11–19CrossRefGoogle Scholar
  34. 34.
    Tas F, Duranyildiz D, Oguz H et al (2006) Serum vascular endothelial growth factor (VEGF) and interlukin-8 (IL-8) levels in small cell lung cancer. Cancer Invest 24:492–495PubMedCrossRefGoogle Scholar
  35. 35.
    Salven P, Ruotsalainen T, Mattson K et al (1998) High pre-treatment serum level of vascular endothelial growth factor (VEGF) is associated with poor outcome in small-cell lung cancer. Int J Cancer 79:144–146PubMedCrossRefGoogle Scholar
  36. 36.
    Routsalainen T, Joensuu H, Mattson K et al (2002) High pretreatment serum concentration of basic fibroblast growth factor is a predictor of poor prognosis in small cell lung cancer. Cancer Epidemiol Biomarkers Prev 11:1492–1495Google Scholar
  37. 37.
    Ueno K, Inoue Y, Kawaguchi T et al (2001) Increased serum levels of basic fibroblast growth factor in lung cancer patients: relevance to response of therapy and prognosis. Lung Cancer 31:213–219PubMedCrossRefGoogle Scholar
  38. 38.
    Horn L, Dahlberg SE, Sandler AB et al (2009) Phase II study of cisplatin plus etoposide and bevacizumab for previously untreated, extensive-stage small-cell lung cancer: Eastern Cooperative Oncology Group Study E3501. J Clin Oncol 27:6006–6011PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Spigel DR, Townley PM, Waterhouse DM et al (2011) Randomized phase II study of bevacizumab in combination with chemotherapy in previously untreated extensive-stage small-cell lung cancer: results from the SALUTE trial. J Clin Oncol 29:2215–2222PubMedCrossRefGoogle Scholar
  40. 40.
    Ready NE, Dudek AZ, Pang HH et al (2011) Cisplatin, irinotecan, and bevacizumab for untreated extensive-stage small-cell lung cancer: CALGB 30306, a phase II study. J Clin Oncol 29:4436–4441PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Murukesh N, Dive C, Jayson GC (2010) Biomarkers of angiogenesis and their role in the development of VEGF inhibitors. Br J Cancer 102:8–18PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Jubb AM, Harris AL (2010) Biomarkers to predict the clinical efficacy of bevacizumab in cancer. Lancet Oncol 11:1172–1183PubMedCrossRefGoogle Scholar
  43. 43.
    Spigel DR, Hainsworth JD, Yardley DA et al (2009) Tracheoesophageal fistula formation in patients with lung cancer treated with chemoradiation and bevacizumab. J Clin Oncol 28:43–48PubMedCrossRefGoogle Scholar
  44. 44.
    Allen JW, Moon J, Gadgeel SM et al (2012) SWOG 0802: A randomized phase II trial of weekly topotecan with and without AVE0005 (aflibercept) in patients with platinum-treated extensive-stage small cell lung cancer (E-SCLC). J Clin Oncol 30(15S):453s; abstract 7005Google Scholar
  45. 45.
    Schneider BJ, Gadgeel SM, Ramnath N et al (2011) Phase II trial of sunitinib maintenance therapy after platinum-based chemotherapy in patients with extensive-stage small cell lung cancer. J Thorac Oncol 6:1117–1120PubMedCrossRefGoogle Scholar
  46. 46.
    Han JY, Kim HY, Lim KY et al (2013) A phase II study of sunitinib in patients with relapsed or refractory small cell lung cancer. Lung Cancer 79:137–142PubMedCrossRefGoogle Scholar
  47. 47.
    Spigel DR, Greco FA, Rubin MS et al (2012) Phase II study of maintenance sunitinib following irinotecan and carboplatin as first-line treatment for patients with extensive-stage small-cell lung cancer. Lung Cancer 77:359–364PubMedCrossRefGoogle Scholar
  48. 48.
    Gitlitz BJ, Moon J, Glisson BS et al (2010) Sorafenib in platinum-treated patients with extensive stage small cell lung cancer. J Thorac Oncol 5:1835–1840PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Arnold AM, Seymour L, Smylie M et al (2007) Phase II study of vandetanib or placebo in small-cell lung cancer patients after complete or partial response to induction chemotherapy with or without radiation therapy: National Cancer Institute of Canada Clinical Trials Group Study BR.20. J Clin Oncol 25:4278–4284PubMedCrossRefGoogle Scholar
  50. 50.
    Ramalingam SS, Belani CP, Mack PC et al (2010) Phase II study of Cediranib (AZD 2171), an inhibitor of the vascular endothelial growth factor receptor, for second-line therapy of small cell lung cancer (National Cancer Institute #7097). J Thorac Oncol 5:1279–1284PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    D’Amato RJ, Loughton MS, Flynn E et al (1994) Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci U S A 91:4082–4085PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Pujol JL, Breton JL, Gervais R et al (2007) Phase III double-blind, placebo-controlled study of thalidomide in extensive-disease small-cell lung cancer after response to chemotherapy: an Intergroup Study FNCLCC cleo04-IFCT 00-01. J Clin Oncol 25:3945–3951PubMedCrossRefGoogle Scholar
  53. 53.
    Lee SM, Woll PJ, Rudd R et al (2009) Anti-angiogenic therapy using thalidomide combined with chemotherapy in small cell lung cancer: a randomized, double-blind, placebo controlled trial. J Natl Cancer Inst 101:1049–1057PubMedCrossRefGoogle Scholar
  54. 54.
    Mok TS, Wu YL, Thongprasert S et al (2009) Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 361:1–11CrossRefGoogle Scholar
  55. 55.
    Rosell R, Carcereny E, Gervais R et al (2012) Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomized phase 3 trial. Lancet Oncol 13:239–246PubMedCrossRefGoogle Scholar
  56. 56.
    Lu HY, Sun WY, Chen B et al (2012) Epidermal growth factor mutations in small cell lung cancer patients who received surgical resection in China. Neoplasma 59:100–104PubMedCrossRefGoogle Scholar
  57. 57.
    Tanno S, Ohsaki Y, Nakanishi K et al (2004) Small cell lung cancer cells express EGFR and tyrosine phosphorylation of EGFR is inhibited by gefitinib (“Iressa”, ZD1839). Oncol Rep 12:1053–1057PubMedGoogle Scholar
  58. 58.
    Moore AM, Einhorn LH, Estes D et al (2006) Gefitinib in patients with chemo-sensitive and chemo-refractory relapsed small cell cancers: a Hoosier Oncology Group phase II trial. Lung Cancer 52:93–97PubMedCrossRefGoogle Scholar
  59. 59.
    Hibi K, Takahashi T, Sekido Y et al (1991) Co-expression of the stem cell factor and the c-kit genes in small cell lung cancer. Oncogene 6:2291–2296PubMedGoogle Scholar
  60. 60.
    Plummer H, Catlett J, Leftwich J et al (1993) C-myc expression correlates with suppression of c-kit proto-oncogene expression in small cell lung cancer cell lines. Cancer 53:4337–4342Google Scholar
  61. 61.
    Schneider BJ, Kalemkerian GP, Ramnath N et al (2010) Phase II trial of imatinib maintenance therapy after irinotecan and cisplatin in patients with c-Kit-positive, extensive-stage small-cell lung cancer. Clin Lung Cancer 11:223–227PubMedCrossRefGoogle Scholar
  62. 62.
    Dy GK, Miller AA, Mandrekar SJ et al (2005) A phase II trial of imatinib (STI571) in patients with c-kit expressing relapsed small-cell lung cancer: a CALGB and NCCTG study. Ann Oncol 16:1811–1816PubMedCrossRefGoogle Scholar
  63. 63.
    Krug LM, Crapanzano JP, Azzoli CG et al (2005) Imatinib mesylate lacks activity in small cell lung carcinoma expressing c-kit protein. Cancer 103:2128–2131PubMedCrossRefGoogle Scholar
  64. 64.
    Spigel DR, Hainsworth JD, Simons L et al (2007) Irinotecan, carboplatin, and imatinib in untreated extensive-stage small-cell lung cancer: a phase II trial of the Minnie Pearl Cancer Research Network. J Thorac Oncol 2:854–861PubMedCrossRefGoogle Scholar
  65. 65.
    Miller AA, Pang H, Hodgson L et al (2010) A phase II study of dasatinib in patients with chemosensitive relapsed small cell lung cancer (Cancer and Leukemia Group B 30602). J Thorac Oncol 5:380–384PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Kaiser U, Schardt C, Brandscheidt D et al (1993) Expression of insulin-like growth factor receptors I and II in normal human lung and in lung cancer. J Cancer Res Clin Oncol 119:665–668PubMedCrossRefGoogle Scholar
  67. 67.
    Warshamana-Greene GS, Litz J, Buchdunger E et al (2004) The insulin-like growth factor-1 (IGF-1) receptor kinase inhibitor NVP-ADW742, in combination with STI571 delineates a spectrum of dependence of small cell lung cancer on IGF-1 and stem cell factor signaling. Mol Cancer Ther 3:527–535PubMedGoogle Scholar
  68. 68.
    Belani CP, Dahlberg SE, Rudin CM et al (2013) Three-arm randomized phase II study of cisplatin and etoposide (CE) versus CE with either vismodegib (V) or cixitumumab (Cx) for patients with extensive-stage small cell lung cancer (ES-SCLC) (ECOG 1508). J Clin Oncol 31(15S):460s; abstract 7508Google Scholar
  69. 69.
    Pandya KJ, Dahlberg S, Hidalgo M et al (2007) A randomized, phase II trial of two dose levels of temsirolimus (CCI-779) in patients with extensive-stage small-cell lung cancer who have responding or stable disease after induction chemotherapy: a trial of the Eastern Cooperative Oncology Group (E1500). J Thorac Oncol 2:1036–1041PubMedCrossRefGoogle Scholar
  70. 70.
    Heymach JV, Johnson DH, Khuri FR et al (2004) Phase II study of the farnesyl transferase inhibitor R115777 in patients with sensitive relapsed small-cell lung cancer. Ann Oncol 15:1187–1193PubMedCrossRefGoogle Scholar
  71. 71.
    Kodate M, Kasai T, Ghashimoto H et al (1997) Expression of matrix metalloproteinase (gelatinase) in T1 adenocarcinoma of the lung. Pathol Int 47:461–469PubMedCrossRefGoogle Scholar
  72. 72.
    Michael M, Babic B, Khokha R et al (1999) Expression and prognostic significance of metalloproteinases and their tissue inhibitors in patients with small-cell lung cancer. J Clin Oncol 17(6):1802–1808PubMedGoogle Scholar
  73. 73.
    Shepherd FA, Giaccone G, Seymour L et al (2002) Prospective, randomized, double-blind, placebo-controlled trial of marimastat after response to first-line chemotherapy in patients with small-cell lung cancer: a trial of the National Cancer Institute of Canada-Clinical Trials Group and the European Organization for Research and Treatment of Cancer. J Clin Oncol 20:4434–4439PubMedCrossRefGoogle Scholar
  74. 74.
    Rigas JR, Denham CA, Rinaldi DA et al (2003) Randomized placebo-controlled trials of the matrix metalloproteinase inhibitor, BAY12-9566, as adjuvant therapy for patients with small cell and non-small cell lung cancer. Proc Am Soc Clin Oncol 22:628; abstract 2525Google Scholar
  75. 75.
    Zangemeister-Wittke U, Schenker T, Luedke GH et al (1998) Synergistic cytotoxicity of bcl-2 antisense oligodeoxynucleotides and etoposide, doxorubicin and cisplatin on small-cell lung cancer cell lines. Br J Cancer 78:1035–1042PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Reed JC, Stein C, Subasinghe C et al (1990) Antisense-mediated inhibition of BCL2 protooncogene expression and leukemic cell growth and survival: comparisons of phosphodiester and phosphorothioate oligodeoxynucleotides. Cancer Res 50:6565–6570PubMedGoogle Scholar
  77. 77.
    Smith MR, Abubakr Y, Mohammad R et al (1994) Antisense oligodeoxyribonucleotide down-regulation of bcl-2 gene expression inhibits growth of the low-grade non-Hodgkin’s lymphoma cell lines WSU-FSCCL. Cancer Gene Ther 2:207–212Google Scholar
  78. 78.
    Rudin CM, Salgia R, Wang X et al (2008) Randomized phase II study of carboplatin and etoposide with or without the bcl-2 antisense oligonucleotide oblimersen for extensive-stage small-cell lung cancer: CALGB 30103. J Clin Oncol 26:870–876PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Li J, Viallet J, Haura E (2008) A small molecule pan-Bcl-2 family inhibitor, GX15-070, induces apoptosis and enhances cisplatin-induced apoptosis in non-small cell lung cancer cells. Cancer Chemother Pharmacol 61:525–534PubMedCrossRefGoogle Scholar
  80. 80.
    Chiappori AA, Schreeder MT, Moezi MM et al (2012) A phase I trial of pan-Bcl-2 antagonist obatoclax administered as a 3-h or a 24-h infusion in combination with carboplatin and etoposide in patients with extensive-stage small cell lung cancer. Br J Cancer 106:839–845PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Paik PK, Rudin CM, Pietanza MC et al (2011) A phase II study of obatoclax mesylate, a Bcl-2 antagonist, plus topotecan in relapsed small cell lung cancer. Lung Cancer 74:481–485PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Gandhi L, Camidge R, Ribeiro de Oliveira M et al (2011) Phase I study of navitoclax (ABT-263), a novel Bcl-2 family inhibitor, in patients with small-cell lung cancer and other solid tumors. J Clin Oncol 29:909–916PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Rudin CM, Hann CL, Garon EB et al (2012) Phase II study of single-agent navitoclax (ABT-263) and biomarker correlates in patients with relapsed small cell lung cancer. Clin Cancer Res 18:3163–3169PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Tang XC, Zhu MK, Shi QX (1980) Comparative studies on the absorption, distribution and excretion of 14C-gossypol in four species of animals (author’s transl). Yao Xue Xue Bao 15:212–217PubMedGoogle Scholar
  85. 85.
    Wang G, Min P, Zhang Y et al (2007) Preclinical studies of orally active, pan Bcl-2 small molecule inhibitor AT-101 in small cell lung cancer. In: AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics, abstract A:51Google Scholar
  86. 86.
    Baggstrom MQ, Qi Y, Koczywas M et al (2011) A phase II study of AT-101 (Gossypol) in chemotherapy-sensitive recurrent extensive-stage small cell lung cancer. J Thorac Oncol 6:1757–1760PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Heist RS, Fain J, Chinnasami B et al (2010) Phase I/II study of AT-101 with topotecan in relapsed and refractory small cell lung cancer. J Thorac Oncol 5:1637–1643PubMedCrossRefGoogle Scholar
  88. 88.
    Schelman WR, Mohammed TA, Traynor AM et al (2013) A phase I study of AT-101 with cisplatin and etoposide in patients with advanced solid tumors with an expanded cohort in extensive-stage small cell lung cancer. Invest New Drugs 32(2):295–302PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Chari NS, McDonnell TJ (2008) The sonic hedgehog signaling network in development and neoplasia. Adv Anat Pathol 14:344–352CrossRefGoogle Scholar
  90. 90.
    Fan X, Matsui W, Khaki L et al (2006) Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res 66:7445–7452PubMedCrossRefGoogle Scholar
  91. 91.
    Watkins DN, Berman DM, Burkholder SG et al (2003) Hedgehog signaling within airway epithelial progenitors and in small-cell lung cancer. Nature 422:313–317PubMedCrossRefGoogle Scholar
  92. 92.
    Park KS, Martelotto LG, Peifer M et al (2011) A crucial requirement for Hedgehog signaling in small cell lung cancer. Nat Med 17:1504–1508PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Androutsellis-Theotokis A, Leker RR, Soldner F et al (2006) Notch signaling regulates stem cell numbers in vitro and in vivo. Nature 442:823–826PubMedCrossRefGoogle Scholar
  94. 94.
    Salcido CD, Larochelle A, Taylor BJ et al (2010) Molecular characterization of side population cells with cancer stem cell-like characteristics in small-cell lung cancer. Br J Cancer 102:1636–1644PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Andrade AC, Nilsson O, Barnes KM et al (2007) Wnt gene expression in the post-natal growth plate: regulation with chondrocyte differentiation. Bone 40:1361–1369PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Lemjabbar-Alaoui H, Dasari V, Sidhu SS et al (2006) Wnt and Hedgehog are critical mediators of cigarette smoke-induced lung cancer. PLoS One 1, e93PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    You L, He B, Xu Z et al (2004) Inhibition of Wnt-2 mediated signaling induces programmed cell death in non-small-cell lung cancer cells. Oncogene 23:6170–6174PubMedCrossRefGoogle Scholar
  98. 98.
    Hess-Stump H (2005) Histone deacetylase inhibitors and cancer: from cell biology to the clinic. Eur J Cell Biol 84:109–121CrossRefGoogle Scholar
  99. 99.
    Zhu WG, Lakshmanan RR, Beal MD et al (2001) DNA methyltransferase inhibition enhances apoptosis induced by histone deacetylase inhibitors. Cancer Res 61:1327–1333PubMedGoogle Scholar
  100. 100.
    Otterson GA, Hodgson L, Pang H et al (2010) Phase II study of the histone deacetylase inhibitor Romidepsin in relapsed small cell lung cancer (Cancer and Leukemia Group B 30304). J Thorac Oncol 5:1644–1648PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Katayama H, Sen S (2010) Aurora kinase inhibitors are anticancer molecules. Biochim Biophys Acta 1799:829–839PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Zhang XH, Rao M, Loprieato JA et al (2008) Aurora A, Aurora B and survivin are novel targets of transcriptional regulation by histone deacetylase inhibitors in non-small cell lung cancer. Cancer Biol Ther 7:1388–1397PubMedCrossRefGoogle Scholar
  103. 103.
    Kaestner P, Stolz A, Bastians H (2009) Determinants for the efficiency of anticancer drugs targeting either Aurora-A or Aurora-B kinases in human colon carcinoma cells. Mol Cancer Ther 8:2046–2056PubMedCrossRefGoogle Scholar
  104. 104.
    Melichar B, Adenis A, Libor H et al (2013) Phase I/II study of investigational Aurora A kinase inhibitor MLN8237 (alisertib): Updates ph II results in patients with small cell lung cancer, non-SCLC, breast cancer, head and neck squamous cell carcinoma, and gastroesophageal cancer. J Clin Oncol 31(15S):33s; abstract 605Google Scholar
  105. 105.
    Brezicka T, Bergman B, Olling S et al (2000) Reactivity of monoclonal antibodies with ganglioside antigens in human small cell lung cancer tissues. Lung Cancer 28:29–36PubMedCrossRefGoogle Scholar
  106. 106.
    Giaccone G, Debruyne C, Felip E et al (2005) Phase III study of adjuvant vaccination with Bec2/Bacille Calmette-Guerin in responding patients with limited-disease small-cell lung cancer (European Organisation for Research and Treatment of Cancer 08971B; Silva Study). J Clin Oncol 23:6854–6864PubMedCrossRefGoogle Scholar
  107. 107.
    Bodner SM, Minna J, Jensen SM et al (1992) Expression of mutant p53 proteins in lung cancer correlates with the class of p53 gene mutation. Oncogene 7:743–749PubMedGoogle Scholar
  108. 108.
    Antonia SJ, Mirza N, Fricke I et al (2006) Combination of p53 cancer vaccine with chemotherapy in patients with extensive stage small cell lung cancer. Clin Cancer Res 12:878–887PubMedCrossRefGoogle Scholar
  109. 109.
    Mattson K, Niiranen A, Pyrhönen S et al (1992) Natural interferon alfa as maintenance therapy for small cell lung cancer. Eur J Cancer 28A:1387–1391PubMedCrossRefGoogle Scholar
  110. 110.
    Ruotsalainen T, Halme M, Isokangas OP et al (2000) Interferon-alpha and 13-cis-retinoic acid as maintenance therapy after high-dose combination chemotherapy with growth factor support for small cell lung cancer-a feasibility study. Anticancer Drugs 11:101–108PubMedCrossRefGoogle Scholar
  111. 111.
    Salama AK, Hodi FS (2011) Cytotoxic T-lymphocyte-associated antigen-4. Clin Cancer Res 17:4622–4628PubMedCrossRefGoogle Scholar
  112. 112.
    Seliger B (2005) Strategies of tumor immune evasion. BioDrugs 19:347–354PubMedCrossRefGoogle Scholar
  113. 113.
    Reck M, Bondarenko I, Luft A et al (2013) Ipilimumab in combination with paclitaxel and carboplatin as first-line therapy in extensive-disease-small-cell lung cancer: results from a randomized, double-blind, multicenter phase 2 trial. Ann Oncol 24:75–83PubMedCrossRefGoogle Scholar
  114. 114.
    Ott PA, Fernandez MEE, Hiret S et al (2015) Pembrolizumab (MK-3475) in patients with extensive-stage small cell lung cancer: Preliminary safety and efficacy results from KEYNOTE-028. J Clin Oncol 33(15S):400s; abstract 7502Google Scholar
  115. 115.
    Antonia SJ, Bendell JC, Taylor MH et al. Phase I/II study of nivolumab with or without ipilumumab for treatment of recurrent small cell lung cancer: CA209-032. J Clin Oncol 33(15S):400s; abstract 7503Google Scholar
  116. 116.
    Rudin CM, Poirier JT, Senzer NN et al (2011) Phase I clinical study of Seneca Valley Virus (SVV-001), a replication-competent picornavirus, in advanced solid tumors with neuroendocrine features. Clin Cancer Res 17:888–895PubMedCrossRefGoogle Scholar
  117. 117.
    Molina JR, Mandrekar SJ, Dy GK (2013) A randomized double-blind phase II study of the Seneca Valley virus (NTX-010) versus placebo for patients with extensive stage SCLC who were stable or responding after at least four cycles of platinum-based chemotherapy: Alliance (NCCTG) N0923 study. J Clin Oncol 31(15S):460s; abstract 7509Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Division of Hematology/OncologyUniversity of MichiganAnn ArborUSA
  2. 2.Division of Hematology/OncologyUniversity of MichiganAnn ArborUSA

Personalised recommendations