Personalized Therapy of Non-small Cell Lung Cancer (NSCLC)

  • Shirish M. GadgeelEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 890)


Lung cancer remains the most common cause of cancer related deaths in both men and women in the United States and non-small cell lung cancer (NSCLC) accounts for over 85 % of all lung cancers. Survival of these patients has not significantly altered in over 30 years. This chapter initially discusses the clinical presentation of lung cancer patients. Most patients diagnosed with lung cancer due to symptoms have advanced stage cancer. Once diagnosed, lung cancer patients need imaging studies to assess the stage of the disease before decisions regarding therapy are finalized. The most important prognostic factors are stage of the disease and performance status and these factors also determine therapy. The chapter subsequently discusses management of each stage of the disease and the impact of several pathologic, clinical factors in personalizing therapy for each individual patient. Transition from chemotherapy for every patient to a more personalized approach based on histology and molecular markers has occurred in the management of advanced stage NSCLC. It is expected that such a personalized approach will extend to all stages of NSCLC and will likely improve the outcomes of all NSCLC patients.


Clinical symptoms Staging NSCLC Chemotherapy Histology EGFR ALK Molecular markers 


  1. 1.
  2. 2.
    Chute CG, Greenberg ER, Baron J et al (1985) Presenting conditions of 1539 population-based lung cancer patients by cell type and stage in New Hampshire and Vermont. Cancer 56:2107–11PubMedCrossRefGoogle Scholar
  3. 3.
    Koyi H, Hillerdal G, Brandén E (2002) A prospective study of a total material of lung cancer from a county in Sweden 1997–1999: gender, symptoms, type, stage, and smoking habits. Lung Cancer 36:9–14PubMedCrossRefGoogle Scholar
  4. 4.
    Buccheri G, Ferrigno D (2004) Lung cancer: clinical presentation and specialist referral time. Eur Respir J 24:898PubMedCrossRefGoogle Scholar
  5. 5.
    The National Lung Screening Trial Research Team (2011) Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 365:395–409PubMedCentralCrossRefGoogle Scholar
  6. 6.
    Langer C, Lilenbaum R (2004) Role of chemotherapy in patients with poor performance status and advanced non-small cell lung cancer. Semin Oncol 31(suppl 6):8–15PubMedCrossRefGoogle Scholar
  7. 7.
    Aggarwal C, Langer CJ (2012) Older age, poor performance status and major comorbidities: how to treat high-risk patients with advanced nonsmall cell lung cancer. Curr Opin Oncol 24:130–6PubMedCrossRefGoogle Scholar
  8. 8.
    Mountain CF (1997) Revisions in the international system for staging lung cancer. Chest 111:1710–1717PubMedCrossRefGoogle Scholar
  9. 9.
    Non-small Cell Lung Cancer Collaborative Group (1995) Chemotherapy in non-small cell lung cancer: a meta-analysis using updated data on individual patients from 52 randomized clinical trials. BMJ 311:899–909CrossRefGoogle Scholar
  10. 10.
    Butts CA, Ding K, Seymour L et al (2010) Randomized phase III trial of vinorelbine plus cisplatin compared with observation in completely resected stage IB and II non-small-cell lung cancer: updated survival analysis of JBR-10. J Clin Oncol 28:29–34PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Douillard JY, Rosell R, De Lena M et al (2006) Adjuvant vinorelbine plus cisplatin versus observation in patients with completely resected stage IB–IIIA non-small cell lung cancer (Adjuvant Navelbine International Trialist Association [ANITA]): a randomised controlled trial. Lancet Oncology 7:719–727PubMedCrossRefGoogle Scholar
  12. 12.
    Strauss GM, Herndon JE, Maddaus MA et al (2008) Adjuvant paclitaxel plus carboplatin compared with observation in stage IB non–small-cell lung cancer: CALGB 9633 with the Cancer and Leukemia Group B, Radiation Therapy Oncology Group, and North Central Cancer Treatment Group Study Groups. J Clin Oncol 26:5043–5051PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Chansky K, Sculier JP, Crowley JJ et al (2009) The International Association for the Study of Lung Cancer Staging Project: prognostic factors and pathologic TNM stage in surgically managed non-small cell lung cancer. J Thorac Oncol 4(7):792–801PubMedCrossRefGoogle Scholar
  14. 14.
    Fibla JJ, Cassivi SD, Brunelli A et al (2012) Re-evaluation of the prognostic value of visceral pleura invasion in stage IB non-small cell lung cancer using the prospective multicenter ACOSOG Z0030 trial data set. Lung Cancer 78(3):259–262PubMedCrossRefGoogle Scholar
  15. 15.
    Schuchert MJ, Schumacher L, Kilic A et al (2011) Impact of angiolymphatic and pleural invasion on surgical outcomes for stage I non-small cell lung cancer. Ann Thorac Surg 91(4):1059–1065PubMedCrossRefGoogle Scholar
  16. 16.
    Kato T, Ishikawa K, Aragaki M et al (2012) Angiolymphatic invasion exerts a strong impact on surgical outcomes for stage I lung adenocarcinoma, but not non-adenocarcinoma. Lung Cancer 77(2):394–400PubMedCrossRefGoogle Scholar
  17. 17.
    Reed E (1998) Platinum-DNA adduct, nucleotide excision repair and platinum based anti-cancer chemotherapy. Cancer Treat Rev 24(5):331–344PubMedCrossRefGoogle Scholar
  18. 18.
    Olaussen KA, Dunant A, Fouret P et al (2006) DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N Engl J Med 355(10):983–991PubMedCrossRefGoogle Scholar
  19. 19.
    Friboulet L, Olaussen KA, Pignon JP et al (2013) ERCC1 isoform expression and DNA repair in non-small-cell lung cancer. N Engl J Med 368:1101–10PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Gadgeel SM, Bepler G (2013) Prognostic and predictive markers for personalized adjuvant therapy for non-small-cell lung cancer patients. Future Oncol 9:1909–21PubMedCrossRefGoogle Scholar
  21. 21.
    Goss GD, O’Callaghan C, Lorimer I et al (2013) Gefitinib versus placebo in completely resected non-small-cell lung cancer: results of the NCIC CTG BR19 study. J Clin Oncol 31:3320–6PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Kelly K, Altorki N, Eberhart E et al (2014) A randomized, double-blind phase 3 trial of adjuvant erlotinib (E) versus placebo (P) following complete tumor resection with or without adjuvant chemotherapy in patients (pts) with stage IB-IIIA EGFR positive (IHC/FISH) non-small cell lung cancer (NSCLC): RADIANT results. J Clin Oncol 32: abstract 7501Google Scholar
  23. 23.
    Chen HY, Yu SL, Chen CH et al (2007) A five-gene signature and clinical outcome in non-small-cell lung cancer. N Engl J Med 356(1):11–20PubMedCrossRefGoogle Scholar
  24. 24.
    Kratz JR, He J, Van Den Eeden SK et al (2012) A practical molecular assay to predict survival in resected non-squamous, non-small-cell lung cancer: development and international validation studies. Lancet 379(9818):823–832PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Scarpaci A, Mitra P, Jarrar D et al (2013) Multimodality approach to management of stage III non-small cell lung cancer. Surg Oncol Clin N Am 22:319–28PubMedCrossRefGoogle Scholar
  26. 26.
    Donington JS, Pass HI (2013) Surgical approach to locally advanced non-small cell lung cancer. Cancer J 19:217–21PubMedCrossRefGoogle Scholar
  27. 27.
    Albain KS, Swann RS, Rusch VW et al (2009) Radiotherapy plus chemotherapy with or without surgical resection for stage III non-small-cell lung cancer: a phase III randomised controlled trial. Lancet 374:379–86PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Scagliotti GV, Parikh P, von Pawel J et al (2008) Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J Clin Oncol 26:3543–51PubMedCrossRefGoogle Scholar
  29. 29.
    Ceppi P, Volante M, Saviozzi S et al (2006) Squamous cell carcinoma of the lung compared with other histotypes shows higher messenger RNA and protein levels for thymidylate synthase. Cancer 107:1589–96PubMedCrossRefGoogle Scholar
  30. 30.
    Ciuleanu T, Brodowicz T, Zielinski C et al (2009) Maintenance pemetrexed plus best supportive care versus placebo plus best supportive care for non-small-cell lung cancer: a randomised, double-blind, phase 3 study. Lancet 374:1432–40PubMedCrossRefGoogle Scholar
  31. 31.
    Paz-Ares LG, de Marinis F, Dediu M et al (2013) PARAMOUNT: Final overall survival results of the phase III study of maintenance pemetrexed versus placebo immediately after induction treatment with pemetrexed plus cisplatin for advanced nonsquamous non-small-cell lung cancer. J Clin Oncol 31:2895–902PubMedCrossRefGoogle Scholar
  32. 32.
    Cappuzzo F, Ciuleanu T, Stelmakh L et al (2010) Erlotinib as maintenance treatment in advanced non-small-cell lung cancer: a multicentre, randomised, placebo-controlled phase 3 study. Lancet Oncol 11:521–9PubMedCrossRefGoogle Scholar
  33. 33.
    Johnson DH, Fehrenbacher L, Novotny WF et al (2004) Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol 22:2184–91PubMedCrossRefGoogle Scholar
  34. 34.
    Sandler A, Gray R, Perry MC et al (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355:2542–50PubMedCrossRefGoogle Scholar
  35. 35.
    Reck M, von Pawel J, Zatloukal P et al (2010) Overall survival with cisplatin-gemcitabine and bevacizumab or placebo as first-line therapy for nonsquamous non-small-cell lung cancer: results from a randomised phase III trial (AVAiL). Ann Oncol 21:1804–9PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Patel JD, Socinski MA, Garon EB et al (2013) PointBreak: A randomized phase III study of pemetrexed plus carboplatin and bevacizumab followed by maintenance pemetrexed and bevacizumab versus paclitaxel plus carboplatin and bevacizumab followed by maintenance bevacizumab in patients with stage IIIB or IV nonsquamous non-small-cell lung cancer. J Clin Oncol 31:4349–57PubMedCrossRefGoogle Scholar
  37. 37.
    Santos E, Martin-Zanca D, Reddy EP et al (1984) Malignant activation of a K-ras oncogene in lung carcinoma but not in normal tissue of the same patient. Science 223:661–4PubMedCrossRefGoogle Scholar
  38. 38.
    Karnoub AE, Weinberg RA (2008) Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 9:517–31PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Mascaux C, Iannino N, Martin B et al (2005) The role of RAS oncogene in survival of patients with lung cancer: a systematic review of the literature with meta-analysis. Br J Cancer 92(1):131–139PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Shepherd FA, Bourredjem A, Brambilla E et al (2012) Prognostic and predictive effects of KRAS mutation subtype in completely resected non-small cell lung cancer (NSCLC): A LACE-bio study. ASCO Meeting Abstracts; 30(15 suppl):7007Google Scholar
  41. 41.
    Tejpar S, Celik I, Schlichting M et al (2012) Association of KRAS G13D tumor mutations with outcome in patients with metastatic colorectal cancer treated with first-line chemotherapy with or without cetuximab. J Clin Oncol 30(29):3570–3577PubMedCrossRefGoogle Scholar
  42. 42.
    Janne PA, Shaw AT, Pereira J et al (2013) Selumetinib plus docetaxel for KRAS-mutant advanced non-small-cell lung cancer: a randomised, multicentre, placebo-controlled, phase 2 study. Lancet Oncol 14:38–47PubMedCrossRefGoogle Scholar
  43. 43.
    Nagarajan L, Louie E, Tsujimoto Y et al (1986) The human c-ros gene (ROS) is located at chromosome region 6q16----6q22. Proc Natl Acad Sci U S A 83:6568–72PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Manning G, Whyte DB, Martinez R et al (2002) The protein kinase complement of the human genome. Science 298:1912–34PubMedCrossRefGoogle Scholar
  45. 45.
    Acquaviva J, Wong R, Charest A (2009) The multifaceted roles of the receptor tyrosine kinase ROS in development and cancer. Biochim Biophys Acta 1795:37–52PubMedGoogle Scholar
  46. 46.
    Takeuchi K, Soda M, Togashi Y et al (2012) RET, ROS1 and ALK fusions in lung cancer. Nat Med 18:378–81PubMedCrossRefGoogle Scholar
  47. 47.
    Bergethon A, Shaw AT, Ou SH et al (2012) ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol 30:863–70PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Shaw AT, Camidge DR, Engelman JR et al (2012) Clinical activity of crizotinib in advanced non-small cell lung cancer (NSCLC) harboring ROS1 gene rearrangement. J Clin Oncol 30: abstract 7508Google Scholar
  49. 49.
    Gherardi E, Birchmeier W, Birchmeier C et al (2012) Targeting MET in cancer: rationale and progress. Nat Rev Cancer 12:89–103PubMedCrossRefGoogle Scholar
  50. 50.
    Park S, Choi YL, Sung CO et al (2012) High MET copy number and MET overexpression: poor outcome in non-small cell lung cancer patients. Histol Histopathol 27:197–207PubMedGoogle Scholar
  51. 51.
    Ma PC, Jagadeeswaran R, Jagadeesh S et al (2005) Functional expression and mutations of c-Met and its therapeutic inhibition with SU11274 and small interfering RNA in non–small cell lung cancer. Cancer Res 65:1479–88PubMedCrossRefGoogle Scholar
  52. 52.
    Cappuzzo F, Marchetti A, Skokan M et al (2009) Increased MET gene copy number negatively affects survival of surgically resected non–small-cell lung cancer patients. J Clin Oncol 27:1667–74PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Engelman JA, Zejnullahu K, Mitsudomi T et al (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316:1039–43PubMedCrossRefGoogle Scholar
  54. 54.
    Turke AB, Zejnullahu K, Wu YL et al (2010) Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell 17:77–88PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Zhang YW, Staal B, Essenburg C et al (2010) MET kinase inhibitor SGX523 synergizes with epidermal growth factor receptor inhibitor erlotinib in a hepatocyte growth factor–dependent fashion to suppress carcinoma growth. Cancer Res 70:6880–90PubMedCrossRefGoogle Scholar
  56. 56.
    Liu L, Shi H, Liu Y et al (2011) Synergistic effects of foretinib with HER-targeted agents in MET and HER1- or HER2-coactivated tumor cells. Mol Cancer Ther 10:518–30PubMedCrossRefGoogle Scholar
  57. 57.
    Spigel DR, Edelman MJ, O’Byrne K et al (2014) Onartuzumab plus erlotinib versus erlotinib in previously treated stage IIIb or IV NSCLC: Results from the pivotal phase III randomized, multicenter, placebo-controlled METLung (OAM4971g) global trial. J Clin Oncol 32: abstract 8000Google Scholar
  58. 58.
    Sequist LV, von Pawel J, Garmey EG et al (2011) Randomized phase II study of erlotinib plus tivantinib versus erlotinib plus placebo in previously treated non-small-cell lung cancer. J Clin Oncol 29:3307–15PubMedCrossRefGoogle Scholar
  59. 59.
    Camidge DR, Ou, SH, Shapiro G et al (2014) Efficacy and safety of crizotinib in patients with advanced c-MET-amplified non-small cell lung cancer (NSCLC). J Clin Oncol 32: abstract 8001Google Scholar
  60. 60.
    Gordon MS, Vogelzang NJ, Schoffski P et al (2011) Activity of cabozantinib (XL184) in soft tissue and bone: Results of a phase II randomized phase II discontinuation trial in patients with advanced solid tumors. J Clin Oncol 29: abstract 3010Google Scholar
  61. 61.
    Alberti L, Carniti C, Miranda C, Roccato E, Pierotti MA (2003) RET and NTRK1 protooncogenes in human diseases. J Cell Physiol 195:168–86PubMedCrossRefGoogle Scholar
  62. 62.
    Bongarzone I, Vigneri P, Mariani L, Collini P, Pilotti S, Pierotti MA (1998) RET/NTRK1 rearrangements in thyroid gland tumors of the papillary carcinoma family: correlation with clinicopathological features. Clin Cancer Res 4:223–8PubMedGoogle Scholar
  63. 63.
    Ju YS, Lee WC, Shin JY, Lee S, Bleazard T, Won JK et al (2012) A transforming KIF5B and RET gene fusion in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing. Genome Res 22:436–45PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Drilon A, Wang L, Hasanovic A et al (2013) Response to cabozantinib in patients with RET fusion-positive lung adenocarcinomas. Cancer Discov 3:630–5PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Mazieres J, Peters S, Lepage B et al (2013) Lung cancer that harbors a HER2 mutation: epidemiologic characteristics and therapeutic perspectives. J Clin Oncol 31:1997–2003PubMedCrossRefGoogle Scholar
  66. 66.
    Arcila ME, Chaft JE, Nafa K et al (2012) Prevalence, clinicopathologic associations, and molecular spectrum of ERBB2 (HER2) tyrosine kinase mutations in lung adenocarcinomas. Clin Cancer Res 18:4910–8PubMedCrossRefGoogle Scholar
  67. 67.
    Pelligrini C, Falleni M, Marchetti A et al (2003) HER-2/Neu alterations in non-small cell lung cancer: a comprehensive evaluation by real time reverse transcription-PCR, fluorescence in situ hybridization, and immunohistochemistry. Clin Cancer Res 9:3645–52Google Scholar
  68. 68.
    Hirsch FR, Varella-Garcia M, Franklin WA et al (2002) Evaluation of HER-2/neu gene amplification and protein expression in non-small cell lung cancer. B J Cancer 86:1449–56CrossRefGoogle Scholar
  69. 69.
    Davies H, Bignell GR, Cox C et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–54PubMedCrossRefGoogle Scholar
  70. 70.
    Chapman PB, Hauschild A, Robert C et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364:2507–16PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Paik PK, Arcila ME, Fara M et al (2011) Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations. J Clin Oncol 29:2046–51PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Marchetti A, Felicioni L, Malatesta S et al (2011) Clinical features and outcome of patients with non–small-cell lung cancer harboring BRAF mutations. J Clin Oncol 29:3574–3579PubMedCrossRefGoogle Scholar
  73. 73.
    Kobayashi M, Sonobe M, Takahashi T et al (2011) Clinical significance of BRAF gene mutations in patients with non-small cell lung cancer. Anticancer Res 31:4619–23PubMedGoogle Scholar
  74. 74.
    Planchard D, Mazieres J, Riely GJ et al (2013) Interim results of phase II study BRF113928 of dabrafenib in BRAF V600E mutation–positive non-small cell lung cancer (NSCLC) patients. J Clin Oncol 31: abstract 8009Google Scholar
  75. 75.
    Weiss J, Sos ML, Seidel D et al (2010) Frequent and focal FGFR1 amplification associates with therapeutically tractable FGFR1 dependency in squamous cell lung cancer. Sci Transl Med 2(62):62ra93PubMedPubMedCentralGoogle Scholar
  76. 76.
    Heist RS, Mino-Kenudson M, Sequist LV et al (2012) FGFR1 amplification in squamous cell carcinoma of the lung. J Thorac Oncol 7:1775–1780PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Cancer Genome Atlas Research Network (2012) Comprehensive genomic characterization of sqaumous cell lung cancer. Nature 489:519–25CrossRefGoogle Scholar
  78. 78.
    Gadgeel SM, Chen W, Cote ML et al (2013) Fibrobalst growth factor receptor 1 amplification in non-small cell lung cancer by quantitative real time PCR. PLoS One 8:e79820PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Nogova L, Sequist L, Cassier PA et al (2014) Targeting FGFR-1 amplified lung squamous cell carcinoma with selective pan-FGFR inhibitor BGJ398. J Clin Oncol 32: abstract 8034Google Scholar
  80. 80.
    Paik PK, Shen R, Ferry D et al (2014) A phase Ib open label multicenter study of AZD4547 in patients with advanced squamous cell lung cancers: Preliminary antitumor activity and pharmacodynamic data. J Clin Oncol 32: abstract 8035Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Karmanos Cancer Institute, Wayne State UniversityDetroitUSA

Personalised recommendations