Using fNIRS for Prefrontal-Asymmetry Neurofeedback: Methods and Challenges

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9359)


Functional near-infrared spectroscopy (fNIRS) has become increasingly accessible in recent years, which allows this relatively low-cost and portable brain sensing modality for the application of brain-computer interfaces (BCI). Although there is a growing body of research on fNIRS-based BCI utilising users’ covert psychophysiological activity, there is comparably less research on active BCI, where users engage in thinking strategies with the explicit intention of controlling the behaviour of an interactive system. We draw on four empirical studies, where participants received real-time neurofeedback (NF) of left-asymmetric increase in activation in their dorsolateral prefrontal cortex (DL-PFC), which has previously been identified as a correlate of approach-related motivational tendencies. We discuss methodological considerations and challenges, and provide recommendations about brain-signal selection and integration, NF protocol design, post-hoc and real-time applications of NF success criteria, continuous visual feedback, and individualised feedback based on the variations of the brain-signal in a reference condition.


Prefrontal asymmetry Functional near-infrared spectroscopy (Affective) brain-computer interfaces Neurofeedback 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ayaz, H.: Functional near infrared spectroscopy based brain computer interface. PhD thesis, School of Biomedical Engineering Science & Health Systems, Drexel University (2010)Google Scholar
  2. 2.
    Ayaz, H., Izzetoglu, M., Shewokis, P.A., Onaral, B.: Sliding-window motion artifact rejection for functional near-infrared spectroscopy. In: Engineering in Medicine and Biology Society (EMBC), pp. 6567–6570. IEEE (2010)Google Scholar
  3. 3.
    Bunce, S.C., Izzetoglu, M., Izzetoglu, K., Onaral, B., Pourrezaei, K.: Functional near-infrared spectroscopy. IEEE Engineering in Medicine and Biology Magazine 25(4), 54–62 (2006)CrossRefGoogle Scholar
  4. 4.
    Carver, C.S., Harmon-Jones, E.: Anger and approach: Reply to watson (2009) and to tomarken and zald (2009). Psychological Bulletin 135(2), 215–217 (2009)CrossRefGoogle Scholar
  5. 5.
    Cavazza, M., Aranyi, G., Charles, F.: Brain-computer interfacing to heuristic search: first results. In: Vicente, J.M.F., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo-Moreo, F.J., Adeli, H. (eds.) IWINAC 2015, Part I. LNCS, vol. 9107, pp. 312–321. Springer, Heidelberg (2015) CrossRefGoogle Scholar
  6. 6.
    Cavazza, M., Aranyi, G., Charles, F., Porteous, J., Gilroy, S., Jackont, G., Klovatch, I., Raz, G., Keynan, N.J., Cohen, A., et al.: Frontal alpha asymmetry neurofeedback for brain-computer interfaces. In: Brain-Computer Interface Conference (2014)Google Scholar
  7. 7.
    Cavazza, M., Aranyi, G., Charles, F., Porteous, J., Gilroy, S., Klovatch, I., Jackont, G., Soreq, E., Keynan, N.J., Cohen, A., Raz, G., Hendler, T.: Towards empathic neurofeedback for interactive storytelling. In: Finlayson, M.A., Meister, J.C., Bruneau, E.G. (eds.) 2014 Workshop on Computational Models of Narrative of OpenAccess Series in Informatics (OASIcs), Dagstuhl, Germany, vol. 41, pp. 42–60. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2014)Google Scholar
  8. 8.
    Doi, H., Nishitani, S., Shinohara, K.: NIRS as a tool for assaying emotional function in the prefrontal cortex. Frontiers in Human Neuroscience 7, Article 770 (2013)Google Scholar
  9. 9.
    Esfahani, E.T., Sundararajan, V.: Using brain-computer interfaces to detect human satisfaction in human-robot interaction. International Journal of Humanoid Robotics 8(01), 87–101 (2011)CrossRefGoogle Scholar
  10. 10.
    Field, A.: Discovering statistics using SPSS. Sage (2009)Google Scholar
  11. 11.
    Garcia-Molina, G., Tsoneva, T., Nijholt, A.: Emotional brain-computer interfaces. International Journal of Autonomous and Adaptive Communications Systems 6(1), 9–25 (2013)CrossRefGoogle Scholar
  12. 12.
    Gilroy, S.W., Porteous, J., Charles, F., Cavazza, M., Soreq, E., Raz, G., Ikar, L., Or-Borichov, A., Ben-Arie, U., Klovatch, I., et al.: A brain-computer interface to a plan-based narrative. In: International Joint Conference on Artificial Intelligence (IJCAI), pp. 1997–2005. AAAI Press (2013)Google Scholar
  13. 13.
    Harmon-Jones, E.: Clarifying the emotive functions of asymmetrical frontal cortical activity. Psychophysiology 40(6), 838–848 (2003)CrossRefGoogle Scholar
  14. 14.
    Karran, A.J., Fairclough, S.H., Gilleade, K.: A framework for psychophysiological classification within a cultural heritage context using interest. ACM Transactions on Computer-Human Interaction (TOCHI) 21(6), Article 34 (2015)Google Scholar
  15. 15.
    Lindquist, K.A., Wager, T.D., Kober, H., Bliss-Moreau, E., Barrett, L.F.: The brain basis of emotion: a meta-analytic review. Behavioral and Brain Sciences 35(03), 121–143 (2012)CrossRefGoogle Scholar
  16. 16.
    Morinaga, K., Akiyoshi, J., Matsushita, H., Ichioka, S., Tanaka, Y., Tsuru, J., Hanada, H.: Anticipatory anxiety-induced changes in human lateral prefrontal cortex activity. Biological Psychology 74(1), 34–38 (2007)CrossRefGoogle Scholar
  17. 17.
    Mühl, C., Heylen, D.: Cross-modal elicitation of affective experience. In: 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops, ACII 2009, pp. 1–12. IEEE (2009)Google Scholar
  18. 18.
    Naseer, N., Hong, K.: fNIRS-based brain-computer interfaces: a review. Frontiers in Human Neuroscience 9, Article 3 (2015)Google Scholar
  19. 19.
    Rosenfeld, J.P., Cha, G., Blair, T., Gotlib, I.H.: Operant (biofeedback) control of left-right frontal alpha power differences: Potential neurotherapy for affective disorders. Biofeedback and Self-Regulation 20(3), 241–258 (1995)CrossRefGoogle Scholar
  20. 20.
    Ruocco, A.C., Rodrigo, A.H., Lam, J., Di Domenico, S.I., Graves, B., Ayaz, H.: A problem-solving task specialized for functional neuroimaging: validation of the Scarborough adaptation of the Tower of London (S-TOL) using near-infrared spectroscopy. Frontiers in Human Neuroscience 8, Article 185 (2014)Google Scholar
  21. 21.
    Sakatani, K., Takemoto, N., Tsujii, T., Yanagisawa, K., Tsunashima, H.: Nirs-based neurofeedback learning systems for controlling activity of the prefrontal cortex. In: Oxygen Transport to Tissue XXXV, pp. 449–454. Springer (2013)Google Scholar
  22. 22.
    Sarkheil, P., Zilverstand, A., Kilian-Hütten, N., Schneider, F., Goebel, R., Mathiak, K.: fMRI feedback enhances emotion regulation as evidenced by a reduced amygdala response. Behavioural Brain Research 281, 326–332 (2015)CrossRefGoogle Scholar
  23. 23.
    Sitaram, R., Caria, A., Birbaumer, N.: Hemodynamic brain-computer interfaces for communication and rehabilitation. Neural Networks 22(9), 1320–1328 (2009)CrossRefGoogle Scholar
  24. 24.
    Solovey, E.T., Girouard, A., Chauncey, K., Hirshfield, L.M., Sassaroli, A., Zheng, F., Fantini, S., Jacob, R.J.: Using fNIRS brain sensing in realistic HCI settings: experiments and guidelines. In: the 22nd Annual ACM Symposium on User Interface Software and Technology, pp. 157–166. ACM (2009)Google Scholar
  25. 25.
    Spielberg, J.M., Miller, G.A., Warren, S.L., Engels, A.S., Crocker, L.D., Banich, M.T., Sutton, B.P., Heller, W.: A brain network instantiating approach and avoidance motivation. Psychophysiology 49(9), 1200–1214 (2012)CrossRefGoogle Scholar
  26. 26.
    Tuscan, L.-A., Herbert, J.D., Forman, E.M., Juarascio, A.S., Izzetoglu, M., Schultheis, M.: Exploring frontal asymmetry using functional near-infrared spectroscopy: a preliminary study of the effects of social anxiety during interaction and performance tasks. Brain Imaging and Behavior 7(2), 140–153 (2013)CrossRefGoogle Scholar
  27. 27.
    Wehbe, R.R., Kappen, D.L., Rojas, D., Klauser, M., Kapralos, B., Nacke, L.E.: EEG-based assessment of video and in-game learning. In: CHI 2013 Extended Abstracts on Human Factors in Computing Systems, pp. 667–672. ACM (2013)Google Scholar
  28. 28.
    Zotev, V., Krueger, F., Phillips, R., Alvarez, R.P., Simmons, W.K., Bellgowan, P., Drevets, W.C., Bodurka, J.: Self-regulation of amygdala activation using real-time fmri neurofeedback. PloS One 6(9), e24522 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of ComputingTeesside UniversityMiddlesbroughUK

Personalised recommendations