Brain–Robot Interfaces Using Spatial Tactile BCI Paradigms

- Symbiotic Brain–Robot Applications -
  • Tomasz M. Rutkowski
  • Kensuke Shimizu
  • Takumi Kodama
  • Peter Jurica
  • Andrzej Cichocki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9359)

Abstract

Two novel approaches to a direct brain–robot interface using tactile brain–computer interface (BCI) technologies are presented in the paper. We propose to utilize two previously developed by our team stimulus driven BCI paradigms, which are based on tactile pin pressure and full body vibrotactile modalities. The user intentions are decoded from the brainwaves in real time and translated to a symbiotic humanoid robot NAO navigation. A communication protocol between the BCI output and the robot is realized in a symbiotic brain–robot communication scenario using an user datagram protocol (UDP). Results obtained from healthy users reproducing simple brain–robot control tasks support the research hypothesis of the possibility to interact with robotic devices using symbiotic BCI technologies.

Keywords

Brain–computer interfaces Brain–robot interfaces Symbiotic brain–robot interaction 

References

  1. 1.
    Chang, M., Nishikawa, N., Struzik, Z.R., Mori, K., Makino, S., Mandic, D., Rutkowski, T.M.: Comparison of P300 responses in auditory, visual and audiovisual spatial speller BCI paradigms. In: Proceedings of the Fifth International Brain-Computer Interface Meeting 2013, p. Article ID: 156. Graz University of Technology Publishing House, Austria, Asilomar Conference Center, Pacific Grove, CA USA, June 3–7, 2013. http://castor.tugraz.at/doku/BCIMeeting2013/156.pdf
  2. 2.
    Chang, M., Mori, K., Makino, S., Rutkowski, T.M.: Spatial auditory two-step input Japanese syllabary brain-computer interface speller. Procedia Technology 18, 25–31 (2014). http://www.sciencedirect.com/science/article/pii/ S2212017314005283 CrossRefGoogle Scholar
  3. 3.
    Kodama, T., Makino, S., Rutkowski, T.M.: Spatial tactile brain-computer interface paradigm applying vibration stimuli to large areas of user’s back. In: Mueller-Putz, G., Bauernfeind, G., Brunner, C., Steyrl, D., Wriessnegger, S., Scherer, R. (eds.) Proceedings of the 6th International Brain-Computer Interface Conference 2014, pp. Article ID 032-1-4. Graz University of Technology Publishing House (2014)Google Scholar
  4. 4.
    Krusienski, D.J., Sellers, E.W., Cabestaing, F., Bayoudh, S., McFarland, D.J., Vaughan, T.M., Wolpaw, J.R.: A comparison of classification techniques for the P300 speller. Journal of Neural Engineering 3(4), 299 (2006). http://stacks.iop.org/1741-2552/3/i=4/a=007 CrossRefGoogle Scholar
  5. 5.
    Patterson, J.R., Grabois, M.: Locked-in syndrome: a review of 139 cases. Stroke 17(4), 758–764 (1986). http://stroke.ahajournals.org/content/17/4/758.abstract CrossRefGoogle Scholar
  6. 6.
    Rutkowski, T.M.: Tactile-body BCI-based NAO robot control. http://youtu.be/sn6OEBBKsPQ
  7. 7.
    Rutkowski, T.M.: Tactile-pressure BCI-based NAO robot control. http://youtu.be/dSrZ5O59vhI
  8. 8.
    Rutkowski, T.M., Mori, H.: Tactile and bone-conduction auditory brain computer interface for vision and hearing impaired users. Journal of Neuroscience Methods 244, 45–51 (2015). http://www.sciencedirect.com/science/article/pii/S0165027014001265, brain Computer Interfaces; Tribute to Greg A. GerhardtCrossRefGoogle Scholar
  9. 9.
    Schalk, G., Mellinger, J.: A Practical Guide to Brain-Computer Interfacing with BCI2000. Springer-Verlag, London (2010)CrossRefGoogle Scholar
  10. 10.
    Schreuder, M., Blankertz, B., Tangermann, M.: A new auditory multi-class brain-computer interface paradigm: Spatial hearing as an informative cue. PLoS ONE 5(4), e9813 (2010)CrossRefGoogle Scholar
  11. 11.
    Shimizu, K., Makino, S., Rutkowski, T.M.: Inter-stimulus interval study for the tactile point-pressure brain-computer interface. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. (accepted, in press). IEEE Engineering in Medicine and Biology Society. IEEE Press, August 25–29, 2015. http://arxiv.org/abs/1506.04458
  12. 12.
    Shimizu, K., Mori, H., Makino, S., Rutkowski, T.M.: Tactile pressure brain-computer interface using point matrix pattern paradigm. In: 15th International Symposium on Soft Computing and Intelligent Systems (SCIS), 2014 Joint 7th International Conference on and Advanced Intelligent Systems (ISIS), pp. 473–477, December 2014. doi:10.1109/SCIS-ISIS.2014.7044756
  13. 13.
    Wolpaw, J., Wolpaw, E.W. (eds.): Brain-Computer Interfaces: Principles and Practice. Oxford University Press (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Tomasz M. Rutkowski
    • 1
    • 2
  • Kensuke Shimizu
    • 1
  • Takumi Kodama
    • 1
  • Peter Jurica
    • 2
  • Andrzej Cichocki
    • 2
  1. 1.Life Science Center of TARAUniversity of TsukubaTsukubaJapan
  2. 2.RIKEN Brain Science InstituteWako-shiJapan

Personalised recommendations