Semi-automatic Liver Tumor Segmentation in Dynamic Contrast-Enhanced CT Scans Using Random Forests and Supervoxels

  • Pierre-Henri ConzeEmail author
  • François Rousseau
  • Vincent Noblet
  • Fabrice Heitz
  • Riccardo Memeo
  • Patrick Pessaux
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9352)


Pre-operative locoregional treatments (PLT) delay the tumor progression by necrosis for patients with hepato-cellular carcinoma (HCC). Toward an efficient evaluation of PLT response, we address the estimation of liver tumor necrosis (TN) from CT scans. The TN rate could shortly supplant standard criteria (RECIST, mRECIST, EASL or WHO) since it has recently shown higher correlation to survival rates. To overcome the inter-expert variability induced by visual qualitative assessment, we propose a semi-automatic method that requires weak interaction efforts to segment parenchyma, tumoral active and necrotic tissues. By combining SLIC supervoxels and random decision forest, it involves discriminative multi-phase cluster-wise features extracted from registered dynamic contrast-enhanced CT scans. Quantitative assessment on expert groundtruth annotations confirms the benefits of exploiting multi-phase information from semantic regions to accurately segment HCC liver tumors.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ronot, M., Bouattour, M., Wassermann, J., Bruno, O., Dreyer, C., Larroque, B., Castera, L., Vilgrain, V., Belghiti, J., Raymond, E., et al.: Alternative response criteria (Choi, EASL and mRECIST) versus RECIST 1.1 in patients with advanced hepatocellular carcinoma treated with Sorafenib. The Oncologist (2014)Google Scholar
  2. 2.
    Ronot, M., Vilgrain, V.: Hepatocellular carcinoma: Diagnostic criteria by imaging techniques. Best Practice & Research Clinical Gastro-enterology 28(5) (2014)CrossRefGoogle Scholar
  3. 3.
    Lee, J., Cai, W., Singh, A., Yoshida, H.: Estimation of necrosis volumes in focal liver lesions based on multi-phase hepatic CT images. In: Virtual Colonoscopy & Abdominal Imaging. Computational Challenges & Clinical Opportunities (2011)Google Scholar
  4. 4.
    Raj, A., Juluru, K.: Visualization and segmentation of liver tumors using dynamic contrast MRI. In: Conference of Engineering in Medicine and Biology (2009)Google Scholar
  5. 5.
    Fang, R., Zabih, R., Raj, A., Chen, T.: Segmentation of liver tumor using efficient global optimal tree metrics graph cuts. In: Yoshida, H., Sakas, G., Linguraru, M.G. (eds.) Abdominal Imaging. Computational and Clinical Applications. LNCS, vol. 7029, pp. 51–59. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Shimizu, A., Narihira, T., Furukawa, D., Kobatake, H., Nawano, S., Shinozaki, K.: Ensemble segmentation using Adaboost with application to liver lesion extraction from a CT volume. In: Workshop on 3D Segmentation in the Clinic (2008)Google Scholar
  7. 7.
    Geremia, E., Menze, B.H., Clatz, O., Konukoglu, E., Criminisi, A., Ayache, N.: Spatial decision forests for ms lesion segmentation in multi-channel mr images. In: Medical Image Computing and Computer-Assisted Intervention (2010)Google Scholar
  8. 8.
    Breiman, L.: Random Forests. Machine learning 45(1), 5–32 (2001)CrossRefGoogle Scholar
  9. 9.
    Criminisi, A., Shotton, J., Konukoglu, E.: Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Foundations and Trends in Computer Graphics and Vision 7(2–3) (2012)CrossRefGoogle Scholar
  10. 10.
    Cuingnet, R., Prevost, R., Lesage, D., Cohen, L.D., Mory, B., Ardon, R.: Automatic detection and segmentation of kidneys in 3D CT Images using random forests. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7512, pp. 66–74. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Bauer, S., Nolte, L.-P., Reyes, M.: Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6893, pp. 354–361. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Beg, M., Miller, M., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International Journal of Computer Vision (2005)Google Scholar
  13. 13.
    Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and Machine Intelligence 34(11), 2274–2282 (2012)CrossRefGoogle Scholar
  14. 14.
    Warfield, S.K., Zou, K.H., Wells, W.M.: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Transactions on Medical Imaging 23(7), 903–921 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (, which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • Pierre-Henri Conze
    • 1
    Email author
  • François Rousseau
    • 2
  • Vincent Noblet
    • 1
  • Fabrice Heitz
    • 1
  • Riccardo Memeo
    • 3
  • Patrick Pessaux
    • 3
  1. 1.ICubeUniversité de Strasbourg, CNRS, Fédération de Médecine Translationnelle de Strasbourg (FMTS)StrasbourgFrance
  2. 2.Institut Mines-Télécom, Télécom Bretagne, INSERM, LATIMBrestFrance
  3. 3.Department of Hepato-Biliary and Pancreatic Surgery, Nouvel Hôpital CivilInstitut Hospitalo-Universitaire de StrasbourgStrasbourgFrance

Personalised recommendations