Advertisement

Brain Fiber Clustering Using Non-negative Kernelized Matching Pursuit

  • Kuldeep Kumar
  • Christian Desrosiers
  • Kaleem Siddiqi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9352)

Abstract

We present a kernel dictionary learning method to cluster fiber tracts obtained from diffusion Magnetic Resonance Imaging (dMRI) data. This method extends the kernelized Orthogonal Matching Pursuit (kOMP) model by adding non-negativity constraints to the dictionary and sparse weights, and uses an efficient technique based on non-negative tri-factorization to compute these parameters. Unlike existing fiber clustering approaches, the proposed method allows fibers to be assigned to more than one cluster and does not need to compute an explicit embedding of the fibers. We evaluate the performance of our method on labeled and multi-subject data, using several fiber distance measures, and compare it with state of the art fiber clustering approaches. Our experiments show that the method is more accurate than the ones we compare against, while being robust to the choice of distance measure and number of clusters.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brun, A., Knutsson, H., Park, H.-J., Shenton, M.E., Westin, C.-F.: Clustering fiber traces using normalized cuts. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 368–375. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  2. 2.
    Bullitt, E., Zeng, D., Gerig, G., Aylward, S., Joshi, S., Smith, J.K., Lin, W., Ewend, M.G.: Vessel tortuosity and brain tumor malignancy: a blinded study. Academic Radiology 12(10), 1232–1240 (2005)CrossRefGoogle Scholar
  3. 3.
    Chen, Y., Gupta, M.R., Recht, B.: Learning kernels from indefinite similarities. In: ICML 2009, pp. 145–152. ACM (2009)Google Scholar
  4. 4.
    Corouge, I., Gouttard, S., Gerig, G.: Towards a shape model of white matter fiber bundles using diffusion tensor MRI. In: ISBI 2004, pp. 344–347. IEEE (2004)Google Scholar
  5. 5.
    Dhillon, I.S., Guan, Y., Kulis, B.: Kernel k-means: spectral clustering and normalized cuts. In: SIGKDD 2004, pp. 551–556. ACM (2004)Google Scholar
  6. 6.
    Ding, C., Li, T., Peng, W., Park, H.: Orthogonal nonnegative matrix tri-factorizations for clustering. In: Proceedings of the 12th ACM SIGKDD (2006)Google Scholar
  7. 7.
    Fortin, D., Aubin-Lemay, C., Boré, A., Girard, G., Houde, J.C., Whittingstall, K., Descoteaux, M.: Tractography in the study of the human brain: a neurosurgical perspective. The Canadian Journal of Neurological Sciences 39(6), 747–756 (2012)CrossRefGoogle Scholar
  8. 8.
    Garyfallidis, E., Brett, M., Correia, M.M., Williams, G.B., Nimmo-Smith, I.: Quickbundles, a method for tractography simplification. Frontiers in Neuroscience 6 (2012)Google Scholar
  9. 9.
    Lazar, M., Weinstein, D.M., et al.: White matter tractography using diffusion tensor deflection. Human Brain Mapping 18(4), 306–321 (2003)CrossRefGoogle Scholar
  10. 10.
    Moberts, B., Vilanova, A., van Wijk, J.J.: Evaluation of fiber clustering methods for diffusion tensor imaging. In: VIS 2005, pp. 65–72. IEEE (2005)Google Scholar
  11. 11.
    Nguyen, H., Patel, V.M., Nasrabadi, N.M., Chellappa, R.: Kernel dictionary learning. In: ICASSP 2012, pp. 2021–2024. IEEE (2012)Google Scholar
  12. 12.
    O’Donnell, L.J., Westin, C.F.: Automatic tractography segmentation using a highdimensional white matter atlas. IEEE Trans. Med. Imag., 1562–1575 (2007)CrossRefGoogle Scholar
  13. 13.
    Sprechmann, P., Sapiro, G.: Dictionary learning and sparse coding for unsupervised clustering. In: 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP). IEEE (2010)Google Scholar
  14. 14.
    Wang, X., Grimson, W.E.L., Westin, C.F.: Tractography segmentation using a hierarchical dirichlet processes mixture model. NeuroImage 54(1), 290–302 (2011)CrossRefGoogle Scholar
  15. 15.
    Wassermann, D., Bloy, L., Kanterakis, E., Verma, R., Deriche, R.: Unsupervised white matter fiber clustering and tract probability map generation: Applications of a Gaussian process framework for white matter fibers. NeuroImage 51(1) (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • Kuldeep Kumar
    • 1
  • Christian Desrosiers
    • 1
  • Kaleem Siddiqi
    • 2
  1. 1.Software and IT EngineeringÉcole de Technologie SupérieureMontrealCanada
  2. 2.Centre for Intelligent MachinesMcGill UniversityMontrealCanada

Personalised recommendations