Web Genre Classification via Hierarchical Multi-label Classification

  • Gjorgji Madjarov
  • Vedrana Vidulin
  • Ivica Dimitrovski
  • Dragi Kocev
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9375)

Abstract

The increase of the number of web pages prompts for improvement of the search engines. One such improvement can be by specifying the desired web genre of the result web pages. This opens the need for web genre prediction based on the information on the web page. Typically, this task is addressed as multi-class classification, with some recent studies advocating the use of multi-label classification. In this paper, we propose to exploit the web genres labels by constructing a hierarchy of web genres and then use methods for hierarchical multi-label classification to boost the predictive performance. We use two methods for hierarchy construction: expert-based and data-driven. The evaluation on a benchmark dataset (20-Genre collection corpus) reveals that using a hierarchy of web genres significantly improves the predictive performance of the classifiers and that the data-driven hierarchy yields similar performance as the expert-driven with the added value that it was obtained automatically and fast.

Keywords

Web genre classification Hierarchy construction Hierarchical multi-label classification 

References

  1. 1.
    Vidulin, V., Luštrek, M., Gams, M.: Multi-label approaches to web genre identification. J. Lang. Tech. Comput. Linguist. 24(1), 97–114 (2009)Google Scholar
  2. 2.
    Santini, M.: Automatic identification of genre in web pages. Ph.D. thesis, University of Brighton (2007)Google Scholar
  3. 3.
    Santini, M.: Cross-testing a genre classification model for the web. In: Mehler, A., Sharoff, S., Santini, M. (eds.) Genres on the Web, pp. 87–128. Springer, Heidelberg (2011)Google Scholar
  4. 4.
    Crowston, K., Kwaśnik, B., Rubleske, J.: Problems in the use-centered development of a taxonomy of web genres. In: Mehler, A., Sharoff, S., Santini, M. (eds.) Genres on the Web, pp. 69–84. Springer, Heidelberg (2011)Google Scholar
  5. 5.
    Silla Jr., C.N., Freitas, A.A.: A survey of hierarchical classification across different application domains. Data Min. Knowl. Discov. 22(1–2), 31–72 (2011)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Kocev, D., Vens, C., Struyf, J., Džeroski, S.: Tree ensembles for predicting structured outputs. Pattern Recogn. 46(3), 817–833 (2013)CrossRefGoogle Scholar
  7. 7.
    Stubbe, A., Ringlstetter, C., Schulz, K.U.: Genre as noise: noise in genre. Int. J. Doc. Anal. Recogn. 10(3–4), 199–209 (2007)CrossRefGoogle Scholar
  8. 8.
    Madjarov, G., Dimitrovski, I., Gjorgjevikj, D., Džeroski, S.: Evaluation of different data-derived label hierarchies in multi-label classification. In: Appice, A., Ceci, M., Loglisci, C., Manco, G., Masciari, E., Ras, Z.W. (eds.) NFMCP 2014. LNCS, vol. 8983, pp. 19–37. Springer, Heidelberg (2015) Google Scholar
  9. 9.
    Tsoumakas, G., Katakis, I., Vlahavas, I.: Effective and efficient multilabel classification in domains with large number of labels. In: Proceedings of the ECML/PKDD Workshop on Mining Multidimensional Data, pp. 30–44 (2008)Google Scholar
  10. 10.
    Manning, C.D., Raghavan, P., Schütze, H.: An Introduction to Information Retrieval. Cambridge University Press, Cambridge (2009)MATHGoogle Scholar
  11. 11.
    Madjarov, G., Kocev, D., Gjorgjevikj, D., Džeroski, S.: An extensive experimental comparison of methods for multi-label learning. Pattern Recogn. 45(9), 3084–3104 (2012)CrossRefGoogle Scholar
  12. 12.
    Vens, C., Struyf, J., Schietgat, L., Džeroski, S., Blockeel, H.: Decision trees for hierarchical multi-label classification. Mach. Learn. 73(2), 185–214 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Gjorgji Madjarov
    • 1
  • Vedrana Vidulin
    • 2
  • Ivica Dimitrovski
    • 1
  • Dragi Kocev
    • 3
    • 4
  1. 1.Faculty of Computer Science and EngineeringSs. Cyril and Methodius UniversitySkopjeMacedonia
  2. 2.Ruđer Bošković InstituteZagrebCroatia
  3. 3.Department of InformaticsUniversity of Bari Aldo MoroBariItaly
  4. 4.Department of Knowledge TechnologiesJožef Stefan InstituteLjubljanaSlovenia

Personalised recommendations