Advertisement

HIV-Induced Epigenetic Alterations in Host Cells

  • Enass A. Abdel-Hameed
  • Hong Ji
  • Mohamed Tarek ShataEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 879)

Abstract

Human immunodeficiency virus (HIV), a member of the Retroviridae family, is a positive-sense, enveloped RNA virus. HIV, the causative agent of acquired immunodeficiency syndrome (AIDS) has two major types, HIV-1 and HIV-2 In HIV-infected cells the single stranded viral RNA genome is reverse transcribed and the double-stranded viral DNA integrates into the cellular DNA, forming a provirus. The proviral HIV genome is controlled by the host epigenetic regulatory machinery. Cellular epigenetic regulators control HIV latency and reactivation by affecting the chromatin state in the vicinity of the viral promoter located to the 5′ long terminal repeat (LTR) sequence. In turn, distinct HIV proteins affect the epigenotype and gene expression pattern of the host cells. HIV-1 infection of CD4+ T cells in vitro upregulated DNMT activity and induced hypermethylation of distinct cellular promoters. In contrast, in the colon mucosa and peripheral blood mononuclear cells from HIV-infected patients demethylation of the FOXP3 promoter was observed, possibly due to the downregulation of DNA methyltransferase 1. For a curative therapy of HIV infected individuals and AIDS patients, a combination of antiretroviral drugs with epigenetic modifying compounds have been suggested for the reactivation of latent HIV-1 genomes. These epigenetic drugs include histone deacetylase inhibitors (HDACI), histone methyltransferase inhibitors (HMTI), histone demethylase inhibitors, and DNA methyltransferase inhibitors (DNMTI).

Keywords

HIV latency de novo methylation T cell specific genes “Shock and kill” therapy Histone deacetylase inhibitors 

References

  1. Abdel-Hameed EA, Ji H, Sherman KE, Shata MT (2014) Epigenetic modification of FOXP3 in patients with chronic HIV infection. J Acquir Immune Defic Syndr 65:19–26CrossRefPubMedPubMedCentralGoogle Scholar
  2. Atianand MK, Fitzgerald KA (2014) Long non-coding RNAs and control of gene expression in the immune system. Trends Mol Med 20:623–631CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baltimore D, Boldin MP, O’Connell RM, Rao DS, Taganov KD (2008) MicroRNAs: new regulators of immune cell development and function. Nat Immunol 9:839–845CrossRefPubMedGoogle Scholar
  4. Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A (2009) An operational definition of epigenetics. Genes Dev 23:781–783CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326CrossRefPubMedGoogle Scholar
  6. Bignami F, Pilotti E, Bertoncelli L, Ronzi P, Gulli M, Marmiroli N, Magnani G, Pinti M, Lopalco L, Mussini C, Ruotolo R, Galli M, Cossarizza A, Casoli C (2012) Stable changes in CD4+ T lymphocyte miRNA expression after exposure to HIV-1. Blood 119:6259–6267CrossRefPubMedGoogle Scholar
  7. Blazkova J, Trejbalova K, Gondois-Rey F, Halfon P, Philibert P, Guiguen A, Verdin E, Olive D, Van Lint C, Hejnar J, Hirsch I (2009) CpG methylation controls reactivation of HIV from latency. PLoS Pathog 5:e1000554CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bohnlein E, Lowenthal JW, Siekevitz M, Ballard DW, Franza BR, Greene WC (1988) The same inducible nuclear proteins regulates mitogen activation of both the interleukin-2 receptor-alpha gene and type 1 HIV. Cell 53:827–836CrossRefPubMedGoogle Scholar
  9. Boland MJ, Nazor KL, Loring JF (2014) Epigenetic regulation of pluripotency and differentiation. Circ Res 115:311–324CrossRefPubMedPubMedCentralGoogle Scholar
  10. Britton LM, Sova P, Belisle S, Liu S, Chan EY, Katze MG, Garcia BA (2014) A proteomic glimpse into the initial global epigenetic changes during HIV infection. Proteomics 14:2226–2230CrossRefPubMedPubMedCentralGoogle Scholar
  11. Burnett JC, Rossi JJ (2012) RNA-based therapeutics: current progress and future prospects. Chem Biol 19:60–71CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bushman F, Lewinski M, Ciuffi A, Barr S, Leipzig J, Hannenhalli S, Hoffmann C (2005) Genome-wide analysis of retroviral DNA integration. Nat Rev Microbiol 3:848–858CrossRefPubMedGoogle Scholar
  13. Chen BK, Feinberg MB, Baltimore D (1997) The kappaB sites in the human immunodeficiency virus type 1 long terminal repeat enhance virus replication yet are not absolutely required for viral growth. J Virol 71:5495–5504PubMedPubMedCentralGoogle Scholar
  14. Chene L, Nugeyre MT, Barre-Sinoussi F, Israel N (1999) High-level replication of human immunodeficiency virus in thymocytes requires NF-kappaB activation through interaction with thymic epithelial cells. J Virol 73:2064–2073PubMedPubMedCentralGoogle Scholar
  15. Christman JK (2002) 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 21:5483–5495CrossRefPubMedGoogle Scholar
  16. Colin L, Van Lint C (2009) Molecular control of HIV-1 postintegration latency: implications for the development of new therapeutic strategies. Retrovirology 6:111CrossRefPubMedPubMedCentralGoogle Scholar
  17. Coull JJ, Romerio F, Sun JM, Volker JL, Galvin KM, Davie JR, Shi Y, Hansen U, Margolis DM (2000) The human factors YY1 and LSF repress the human immunodeficiency virus type 1 long terminal repeat via recruitment of histone deacetylase 1. J Virol 74:6790–6799CrossRefPubMedPubMedCentralGoogle Scholar
  18. Cullen SM, Mayle A, Rossi L, Goodell MA (2014) Hematopoietic stem cell development: an epigenetic journey. Curr Top Dev Biol 107:39–75CrossRefPubMedGoogle Scholar
  19. Dollard SC, Gummuluru S, Tsang S, Fultz PN, Dewhurst S (1994) Enhanced responsiveness to nuclear factor kappa B contributes to the unique phenotype of simian immunodeficiency virus variant SIVsmmPBj14. J Virol 68:7800–7809PubMedPubMedCentralGoogle Scholar
  20. Duverger A, Jones J, May J, Bibollet-Ruche F, Wagner FA, Cron RQ, Kutsch O (2009) Determinants of the establishment of human immunodeficiency virus type 1 latency. J Virol 83:3078–3093CrossRefPubMedPubMedCentralGoogle Scholar
  21. Easley R, Van Duyne R, Coley W, Guendel I, Dadgar S, Kehn-Hall K, Kashanchi F (2010) Chromatin dynamics associated with HIV-1 Tat-activated transcription. Biochim Biophys Acta 1799:275–285CrossRefPubMedGoogle Scholar
  22. Engelman A, Mizuuchi K, Craigie R (1991) HIV-1 DNA integration: mechanism of viral DNA cleavage and DNA strand transfer. Cell 67:1211–1221CrossRefPubMedGoogle Scholar
  23. Engelman A, Kessl JJ, Kvaratskhelia M (2013) Allosteric inhibition of HIV-1 integrase activity. Curr Opin Chem Biol 17:339–345CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB, Zhang X, Wang L, Issner R, Coyne M, Ku M, Durham T, Kellis M, Bernstein BE (2011) Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473:43–49CrossRefPubMedPubMedCentralGoogle Scholar
  25. Feng S, Cokus SJ, Zhang X, Chen PY, Bostick M, Goll MG, Hetzel J, Jain J, Strauss SH, Halpern ME, Ukomadu C, Sadler KC, Pradhan S, Pellegrini M, Jacobsen SE (2010) Conservation and divergence of methylation patterning in plants and animals. Proc Natl Acad Sci U S A 107:8689–8694CrossRefPubMedPubMedCentralGoogle Scholar
  26. Fowler L, Saksena NK (2013) Micro-RNA: new players in HIV-pathogenesis, diagnosis, prognosis and antiviral therapy. AIDS Rev 15:3–14PubMedGoogle Scholar
  27. Friedman J, Cho WK, Chu CK, Keedy KS, Archin NM, Margolis DM, Karn J (2011) Epigenetic silencing of HIV-1 by the histone H3 lysine 27 methyltransferase enhancer of Zeste 2. J Virol 85:9078–9089CrossRefPubMedPubMedCentralGoogle Scholar
  28. Ganesh L, Burstein E, Guha-Niyogi A, Louder MK, Mascola JR, Klomp LW, Wijmenga C, Duckett CS, Nabel GJ (2003) The gene product Murr1 restricts HIV-1 replication in resting CD4+ lymphocytes. Nature 426:853–857CrossRefPubMedGoogle Scholar
  29. Gilmore TD (2006) Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25:6680–6684CrossRefPubMedGoogle Scholar
  30. Giordanengo V, Ollier L, Lanteri M, Lesimple J, March D, Thyss S, Lefebvre JC (2004) Epigenetic reprogramming of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) in HIV-1-infected CEM T cells. FASEB J 18:1961–1963PubMedGoogle Scholar
  31. Grant C, Oh U, Fugo K, Takenouchi N, Griffith C, Yao K, Newhook TE, Ratner L, Jacobson S (2006) Foxp3 represses retroviral transcription by targeting both NF-kappaB and CREB pathways. PLoS Pathog 2:e33CrossRefPubMedPubMedCentralGoogle Scholar
  32. Guttman M, Rinn JL (2012) Modular regulatory principles of large non-coding RNAs. Nature 482:339–346CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hill PW, Amouroux R, Hajkova P (2014) DNA demethylation, Tet proteins and 5-hydroxymethylcytosine in epigenetic reprogramming: an emerging complex story. Genomics 104:324–333CrossRefPubMedGoogle Scholar
  34. Huang J, Wang F, Argyris E, Chen K, Liang Z, Tian H, Huang W, Squires K, Verlinghieri G, Zhang H (2007) Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes. Nat Med 13:1241–1247CrossRefPubMedGoogle Scholar
  35. Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, Cui H, Gabo K, Rongione M, Webster M, Ji H, Potash JB, Sabunciyan S, Feinberg AP (2009) The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41:178–186CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ji H, Ehrlich LI, Seita J, Murakami P, Doi A, Lindau P, Lee H, Aryee MJ, Irizarry RA, Kim K, Rossi DJ, Inlay MA, Serwold T, Karsunky H, Ho L, Daley GQ, Weissman IL, Feinberg AP (2010) Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature 467:338–342CrossRefPubMedPubMedCentralGoogle Scholar
  37. Jones KA, Peterlin BM (1994) Control of RNA initiation and elongation at the HIV-1 promoter. Annu Rev Biochem 63:717–743CrossRefPubMedGoogle Scholar
  38. Kauder SE, Bosque A, Lindqvist A, Planelles V, Verdin E (2009) Epigenetic regulation of HIV-1 latency by cytosine methylation. PLoS Pathog 5:e1000495CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kinoshita S, Su L, Amano M, Timmerman LA, Kaneshima H, Nolan GP (1997) The T cell activation factor NF-ATc positively regulates HIV-1 replication and gene expression in T cells. Immunity 6:235–244CrossRefPubMedGoogle Scholar
  40. Klase Z, Houzet L, Jeang KT (2012) MicroRNAs and HIV-1: complex interactions. J Biol Chem 287:40884–40890CrossRefPubMedPubMedCentralGoogle Scholar
  41. Klose RJ, Bird AP (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 31:89–97CrossRefPubMedGoogle Scholar
  42. Lassen K, Han Y, Zhou Y, Siliciano J, Siliciano RF (2004) The multifactorial nature of HIV-1 latency. Trends Mol Med 10:525–531CrossRefPubMedGoogle Scholar
  43. Leonard J, Parrott C, Buckler-White AJ, Turner W, Ross EK, Martin MA, Rabson AB (1989) The NF-kappa B binding sites in the human immunodeficiency virus type 1 long terminal repeat are not required for virus infectivity. J Virol 63:4919–4924PubMedPubMedCentralGoogle Scholar
  44. Mikovits JA, Young HA, Vertino P, Issa JP, Pitha PM, Turcoski-Corrales S, Taub DD, Petrow CL, Baylin SB, Ruscetti FW (1998) Infection with human immunodeficiency virus type 1 upregulates DNA methyltransferase, resulting in de novo methylation of the gamma interferon (IFN-gamma) promoter and subsequent downregulation of IFN-gamma production. Mol Cell Biol 18:5166–5177CrossRefPubMedPubMedCentralGoogle Scholar
  45. Nabel G, Baltimore D (1987) An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature 326:711–713CrossRefPubMedGoogle Scholar
  46. Palacios JA, Perez-Pinar T, Toro C, Sanz-Minguela B, Moreno V, Valencia E, Gomez-Hernando C, Rodes B (2012) Long-term nonprogressor and elite controller patients who control viremia have a higher percentage of methylation in their HIV-1 proviral promoters than aviremic patients receiving highly active antiretroviral therapy. J Virol 86:13081–13084Google Scholar
  47. Pion M, Jaramillo-Ruiz D, Martinez A, Munoz-Fernandez MA, Correa-Rocha R (2013) HIV infection of human regulatory T cells downregulates Foxp3 expression by increasing DNMT3b levels and DNA methylation in the FOXP3 gene. AIDS 27:2019–2029CrossRefPubMedGoogle Scholar
  48. Poveda E (2014) Ingenol derivates promising for HIV eradication. AIDS Rev 16:246PubMedGoogle Scholar
  49. Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166CrossRefPubMedGoogle Scholar
  50. Saayman S, Ackley A, Turner AM, Famiglietti M, Bosque A, Clemson M, Planelles V, Morris KV (2014) An HIV-encoded antisense long noncoding RNA epigenetically regulates viral transcription. Mol Ther 22:1164–1175CrossRefPubMedCentralGoogle Scholar
  51. Selby MJ, Peterlin BM (1990) Trans-activation by HIV-1 Tat via a heterologous RNA binding protein. Cell 62:769–776CrossRefPubMedGoogle Scholar
  52. Serrao E, Krishnan L, Shun MC, Li X, Cherepanov P, Engelman A, Maertens GN (2014) Integrase residues that determine nucleotide preferences at sites of HIV-1 integration: implications for the mechanism of target DNA binding. Nucleic Acids Res 42:5164–5176CrossRefPubMedPubMedCentralGoogle Scholar
  53. Shan L, Yang HC, Rabi SA, Bravo HC, Shroff NS, Irizarry RA, Zhang H, Margolick JB, Siliciano JD, Siliciano RF (2011) Influence of host gene transcription level and orientation on HIV-1 latency in a primary-cell model. J Virol 85:5384–5393CrossRefPubMedPubMedCentralGoogle Scholar
  54. Sun G, Li H, Wu X, Covarrubias M, Scherer L, Meinking K, Luk B, Chomchan P, Alluin J, Gombart AF, Rossi JJ (2012) Interplay between HIV-1 infection and host microRNAs. Nucleic Acids Res 40:2181–2196CrossRefPubMedGoogle Scholar
  55. Swaminathan G, Navas-Martin S, Martin-Garcia J (2014) MicroRNAs and HIV-1 infection: antiviral activities and beyond. J Mol Biol 426:1178–1197CrossRefPubMedGoogle Scholar
  56. Tan Gana NH, Onuki T, Victoriano AF, Okamoto T (2012) MicroRNAs in HIV-1 infection: an integration of viral and cellular interaction at the genomic level. Front Microbiol 3:306CrossRefPubMedPubMedCentralGoogle Scholar
  57. Timp W, Feinberg AP (2013) Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host. Nat Rev Cancer 13:497–510CrossRefPubMedPubMedCentralGoogle Scholar
  58. Tyagi M, Pearson RJ, Karn J (2010) Establishment of HIV latency in primary CD4+ cells is due to epigenetic transcriptional silencing and P-TEFb restriction. J Virol 84:6425–6437CrossRefPubMedPubMedCentralGoogle Scholar
  59. Van Lint C, Bouchat S, Marcello A (2013) HIV-1 transcription and latency: an update. Retrovirology 10:67CrossRefPubMedPubMedCentralGoogle Scholar
  60. Waddington CH (1953) Epigenetics and evolution. Symp Soc Exp Biol 7:186–199Google Scholar
  61. Wang GP, Ciuffi A, Leipzig J, Berry CC, Bushman FD (2007) HIV integration site selection: analysis by massively parallel pyrosequencing reveals association with epigenetic modifications. Genome Res 17:1186–1194CrossRefPubMedPubMedCentralGoogle Scholar
  62. Wang P, Xue Y, Han Y, Lin L, Wu C, Xu S, Jiang Z, Xu J, Liu Q, Cao X (2014) The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science 344:310–313CrossRefPubMedGoogle Scholar
  63. Wei DG, Chiang V, Fyne E, Balakrishnan M, Barnes T, Graupe M, Hesselgesser J, Irrinki A, Murry JP, Stepan G, Stray KM, Tsai A, Yu H, Spindler J, Kearney M, Spina CA, McMahon D, Lalezari J, Sloan D, Mellors J, Geleziunas R, Cihlar T (2014) Histone deacetylase inhibitor romidepsin induces HIV expression in CD4 T cells from patients on suppressive antiretroviral therapy at concentrations achieved by clinical dosing. PLoS Pathog 10:e1004071CrossRefPubMedPubMedCentralGoogle Scholar
  64. West MJ, Lowe AD, Karn J (2001) Activation of human immunodeficiency virus transcription in T cells revisited: NF-kappaB p65 stimulates transcriptional elongation. J Virol 75:8524–8537CrossRefPubMedPubMedCentralGoogle Scholar
  65. Williams SA, Greene WC (2007) Regulation of HIV-1 latency by T-cell activation. Cytokine 39:63–74CrossRefPubMedPubMedCentralGoogle Scholar
  66. Williams SA, Chen LF, Kwon H, Ruiz-Jarabo CM, Verdin E, Greene WC (2006) NF-kappaB p50 promotes HIV latency through HDAC recruitment and repression of transcriptional initiation. EMBO J 25:139–149CrossRefPubMedGoogle Scholar
  67. Willingham AT, Orth AP, Batalov S, Peters EC, Wen BG, Aza-Blanc P, Hogenesch JB, Schultz PG (2005) A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science 309:1570–1573CrossRefPubMedGoogle Scholar
  68. Youngblood B, Reich NO (2008) The early expressed HIV-1 genes regulate DNMT1 expression. Epigenetics 3:149–156CrossRefPubMedGoogle Scholar
  69. Zemach A, McDaniel IE, Silva P, Zilberman D (2010) Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328:916–919CrossRefPubMedGoogle Scholar
  70. Zhang X, Ulm A, Somineni HK, Oh S, Weirauch MT, Zhang HX, Chen X, Lehn MA, Janssen EM, Ji H (2014) DNA methylation dynamics during ex vivo differentiation and maturation of human dendritic cells. Epigenetics Chromatin 7:21CrossRefPubMedPubMedCentralGoogle Scholar
  71. Zhu J, Yamane H, Paul WE (2010) Differentiation of effector CD4 T cell populations. Annu Rev Immunol 28:445–489CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Enass A. Abdel-Hameed
    • 1
  • Hong Ji
    • 2
  • Mohamed Tarek Shata
    • 1
    • 3
    Email author
  1. 1.Division of Digestive Diseases, Department of Internal MedicineUniversity of Cincinnati Medical CenterCincinnatiUSA
  2. 2.Division of Asthma Research, Department of PediatricsCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  3. 3.Saint James School of MedicineSaint VincentSaint Vincent and the Grenadines

Personalised recommendations