Advertisement

Closure, Properties and Closure Properties of Multirelations

  • Rudolf Berghammer
  • Walter Guttmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9348)

Abstract

Multirelations have been used for modelling games, protocols and computations. They have also been used for modelling contact, closure and topology. We bring together these two lines of research using relation algebras and more general algebras. In particular, we look at various properties of multirelations that have been used in the two lines of research, show how these properties are connected and study by which multirelational operations they are preserved. We find that many results do not require a restriction to up-closed multirelations; this includes connections between various kinds of reflexive-transitive closure.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aumann, G.: Kontakt-Relationen. Sitzungsberichte der Bayerischen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse, pp. 67–77 (1970)Google Scholar
  2. 2.
    Aumann, G.: Kontakt-Relationen (2. Mitteilung). Sitzungsberichte der Bayerischen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse, pp. 119–122 (1971)Google Scholar
  3. 3.
    Aumann, G.: Kontaktrelationen. Mathematisch-physikalische Semesterberichte zur Pflege des Zusammenhangs von Schule und Universität 20, 182–188 (1973)MathSciNetMATHGoogle Scholar
  4. 4.
    Aumann, G.: AD ARTEM ULTIMAM – Eine Einführung in die Gedankenwelt der Mathematik. R. Oldenbourg Verlag (1974)Google Scholar
  5. 5.
    Back, R.J., von Wright, J.: Refinement Calculus. Springer, New York (1998)CrossRefMATHGoogle Scholar
  6. 6.
    Berghammer, R.: Ordnungen, Verbände und Relationen mit Anwendungen, 2nd edn. Springer (2012)Google Scholar
  7. 7.
    Berghammer, R., Guttmann, W.: A relation-algebraic approach to multirelations and predicate transformers. In: Hinze, R., Voigtl\"{a}nder, J. (eds.) MPC 2015. LNCS, vol. 9129, pp. 50–70. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  8. 8.
    Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending Sledgehammer with SMT solvers. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 116–130. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Blanchette, J.C., Nipkow, T.: Nitpick: A counterexample generator for higher-order logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Cavalcanti, A., Woodcock, J., Dunne, S.: Angelic nondeterminism in the unifying theories of programming. Formal Aspects of Computing 18(3), 288–307 (2006)CrossRefMATHGoogle Scholar
  11. 11.
    Furusawa, H., Nishizawa, K., Tsumagari, N.: Multirelational models of lazy, monodic tree, and probabilistic Kleene algebras. Bulletin of Informatics and Cybernetics 41, 11–24 (2009)MathSciNetMATHGoogle Scholar
  12. 12.
    Furusawa, H., Struth, G.: Concurrent dynamic algebra. ACM Transactions on Computational Logic 16(4:30), 1–38 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Furusawa, H., Tsumagari, N., Nishizawa, K.: A non-probabilistic relational model of probabilistic Kleene algebras. In: Berghammer, R., Möller, B., Struth, G. (eds.) RelMiCS/AKA 2008. LNCS, vol. 4988, pp. 110–122. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Guttmann, W.: Algebras for correctness of sequential computations. Sci. Comput. Program. 85(Part B), 224–240 (2014)CrossRefGoogle Scholar
  15. 15.
    Guttmann, W.: Multirelations with infinite computations. Journal of Logical and Algebraic Methods in Programming 83(2), 194–211 (2014)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Martin, C.E., Curtis, S.A.: The algebra of multirelations. Mathematical Structures in Computer Science 23(3), 635–674 (2013)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Martin, C.E., Curtis, S.A., Rewitzky, I.: Modelling angelic and demonic nondeterminism with multirelations. Sci. Comput. Program. 65(2), 140–158 (2007)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Möller, B.: Kleene getting lazy. Sci. Comput. Program. 65(2), 195–214 (2007)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Parikh, R.: Propositional logics of programs: new directions. In: Karpinski, M. (ed.) FCT 1983. LNCS, vol. 158, pp. 347–359. Springer, Heidelberg (1983)CrossRefGoogle Scholar
  20. 20.
    Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a practical link between automatic and interactive theorem provers. In: Sutcliffe, G., Ternovska, E., Schulz, S. (eds.) Proceedings of the 8th International Workshop on the Implementation of Logics, pp. 3–13 (2010)Google Scholar
  21. 21.
    Peleg, D.: Concurrent dynamic logic. J. ACM 34(2), 450–479 (1987)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Preoteasa, V.: Algebra of monotonic Boolean transformers. In: Simao, A., Morgan, C. (eds.) SBMF 2011. LNCS, vol. 7021, pp. 140–155. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  23. 23.
    Rewitzky, I.: Binary multirelations. In: de Swart, H., Orłowska, E., Schmidt, G., Roubens, M. (eds.) TARSKI. LNCS, vol. 2929, pp. 256–271. Springer, Heidelberg (2003)Google Scholar
  24. 24.
    Rewitzky, I., Brink, C.: Monotone predicate transformers as up-closed multirelations. In: Schmidt, R.A. (ed.) RelMiCS/AKA 2006. LNCS, vol. 4136, pp. 311–327. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Schmidt, G.: Relational Mathematics. Cambridge University Press (2011)Google Scholar
  26. 26.
    Schmidt, G., Berghammer, R.: Contact, closure, topology, and the linking of row and column types of relations. Journal of Logic and Algebraic Programming 80(6), 339–361 (2011)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Schmidt, G., Hattensperger, C., Winter, M.: Heterogeneous relation algebra. In: Brink, C., Kahl, W., Schmidt, G. (eds.) Relational Methods in Computer Science, ch. 3, pp. 39–53. Springer, Wien (1997)CrossRefGoogle Scholar
  28. 28.
    Tsumagari, N., Nishizawa, K., Furusawa, H.: Multirelational model of lazy Kleene algebra. In: Berghammer, R., Möller, B., Struth, G. (eds.) Relations and Kleene Algebra in Computer Science: PhD Programme at RelMiCS10/AKA5, pp. 73–77. Report 2008-04, Institut für Informatik, Universität Augsburg (2008)Google Scholar
  29. 29.
    von Wright, J.: Towards a refinement algebra. Sci. Comput. Program. 51(1–2), 23–45 (2004)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Rudolf Berghammer
    • 1
  • Walter Guttmann
    • 2
  1. 1.Institut für InformatikChristian-Albrechts-Universität zu KielKielGermany
  2. 2.Department of Computer Science and Software EngineeringUniversity of CanterburyCanterburyNew Zealand

Personalised recommendations