Advertisement

Force Field Optimization for Ionic Liquids: FFOIL

Annual Report 2015
  • Konrad BreitsprecherEmail author
  • Narayanan Krishnamoorthy Anand
  • Jens Smiatek
  • Christian Holm
Conference paper

Abstract

In the reporting period July 2014 to June 2015, we performed molecular dynamics (MD) simulations with the software packages ESPResSo and Gromacs as well as custom MD-code to investigate different models of room temperature ionic liquids (RTILs) in confined environment and bulk solution. The application in mind is an IL-based electric double-layer capacitor, a non-faradaic energy storage device with advantages in power density and cycle stability over electrochemical cells. In this field, we have developed and applied force fields for ion-ion and ion-electrode interactions on different levels of detail. In 2014, we focused on algorithms for metal boundary conditions in various geometries, needed for realistic modeling of the charging process in a capacitor device. Further, we studied the effects of graphite structure on the adsorbed ions in planar capacitor setups. A possible one-dimensional force field for the interaction between ion and electrode was tested and compared to a fully modeled graphite surface with explicit carbon atoms. This allowed us to show the increased adsorption of the ionic liquid on graphite surfaces due to the texturing influence of the honeycomb pattern. More recently, we performed MD-simulations with electrolyte mixtures and accurate models for carbide-derived carbon electrode systems. In this ongoing work, we study the effect of solvent concentration in ionic liquids on the capacitance of the porous electrode material.

Keywords

Ionic Liquid Porous Electrode Charge Induction Polarizable Force Field Electronic Density Functional Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ohno, H.: Electrochemical Aspects of Ionic Liquids. Wiley, New Jersey (2005)CrossRefGoogle Scholar
  2. 2.
    Bier, M., Dietrich, S.: Mol. Phys. 108, 211 (2010)CrossRefGoogle Scholar
  3. 3.
    Galiński, M., Lewandowski, A., Stepniak, I.: Electrochim. Acta 51(26), 5567 (2006). doi:10.1016/j.electacta.2006.03.016. http://www.sciencedirect.com/science/article/pii/S0013468606002362
  4. 4.
    Simon, P., Gogotsi, Y.: Nat. Mater. 7(11), 845 (2008)CrossRefGoogle Scholar
  5. 5.
    Breitsprecher, K., Košovan, P., Holm, C.: J. Phys. Condens. Matter 26, 284108 (2014). doi:10.1088/0953-8984/26/28/284108 CrossRefGoogle Scholar
  6. 6.
    Breitsprecher, K., Košovan, P., Holm, C.: J. Phys. Condens. Matter 26, 284114 (2014). doi:10.1088/0953-8984/26/28/284114 CrossRefGoogle Scholar
  7. 7.
    Merlet, C., Rotenberg, B., Madden, P.A., Taberna, P.L., Simon, P., Gogotsi, Y., Salanne, M.: Nat. Mater. 11(4), 306 (2012). doi:10.1038/NMAT3260 CrossRefGoogle Scholar
  8. 8.
    Merlet, C., Salanne, M., Rotenberg, B., Madden, P.A.: Electrochim. Acta 101, 262 (2013)CrossRefGoogle Scholar
  9. 9.
    Cole, M., Klein, J.: Surf. Sci. 124(2), 547–554 (1983)Google Scholar
  10. 10.
  11. 11.
    Steele, W.A.: J. Phys. Chem. 82(7), 817 (1978). doi:10.1021/j100496a011 CrossRefGoogle Scholar
  12. 12.
    Arnold, A., Breitsprecher, K., Fahrenberger, F., Kesselheim, S., Lenz, O., Holm, C.: Entropy 15(11), 4569 (2013). doi:10.3390/e15114569. http://www.mdpi.com/1099-4300/15/11/4569
  13. 13.
    Arnold, A., de Joannis, J., Holm, C.: J. Chem. Phys. 117, 2496 (2002)CrossRefGoogle Scholar
  14. 14.
    de Joannis, J., Arnold, A., Holm, C.: J. Chem. Phys. 117, 2503 (2002)CrossRefGoogle Scholar
  15. 15.
    Tyagi, S., Arnold, A., Holm, C.: J. Chem. Phys. 129(20), 204102 (2008). http://www.link.aip.org/link/?JCP/129/204102/1 CrossRefGoogle Scholar
  16. 16.
    Tyagi, C., Süzen, M., Sega, M., Barbosa, M., Kantorovich, S., Holm, C.: J. Chem. Phys. 132, 1154112 (2010)CrossRefGoogle Scholar
  17. 17.
    Kesselheim, S., Sega, M., Holm, C.: Comput. Phys. Commun. 182(1), 33 (2011)CrossRefGoogle Scholar
  18. 18.
    Deserno, M., Holm, C.: J. Chem. Phys. 109, 7678 (1998)CrossRefGoogle Scholar
  19. 19.
    Arnold, A., Fahrenberger, F., Holm, C., Lenz, O., Bolten, M., Dachsel, H., Halver, R., Kabadshow, I., Gähler, F., Heber, F., Iseringhausen, J., Hofmann, M., Pippig, M., Potts, D., Sutmann, G.: Phys. Rev. E 88, 063308 (2013). doi:10.1103/PhysRevE.88.063308 CrossRefGoogle Scholar
  20. 20.
    Roy, D., Patel, N., Conte, S., Maroncelli, M.: J. Phys. Chem. B 114(25), 8410 (2010). doi:10.1021/jp1004709. http://www.pubs.acs.org/doi/abs/10.1021/jp1004709. PMID: 20536202
  21. 21.
    Roy, D., Maroncelli, M.: J. Phys. Chem. B 114(39), 12629 (2010). doi:10.1021/jp108179n. http://www.pubs.acs.org/doi/abs/10.1021/jp108179n
  22. 22.
    Arnold, A., Lenz, O., Kesselheim, S., Weeber, R., Fahrenberger, F., Röhm, D., Košovan, P., Holm, C.: In: Griebel, M., Schweitzer, M.A. (eds.) Meshfree Methods for Partial Differential Equations VI. Lecture Notes in Computational Science and Engineering, vol. 89, pp. 1–23. Springer, Berlin (2013). doi:10.1007/978-3-642-32979-1_1. http://www.springer.com/mathematics/computational+science+\&+engineering/book/978-3-642-32978-4
  23. 23.
    Palmer, J., Llobet, A., Yeon, S.H., Fischer, J., Shi, Y., Gogotsi, Y., Gubbins, K., Carbon 48(4), 1116 (2010). http://www.sciencedirect.com/science/article/pii/S0008622309007684 CrossRefGoogle Scholar
  24. 24.
    Merlet, C., Péan, C., Rotenberg, B., Madden, P.A., Daffos, B., Taberna, P.L., Simon, P., Salanne, M.: Nat. Commun. 4 (2013)Google Scholar
  25. 25.
    Péan, C., Merlet, C., Rotenberg, B., Madden, P.A., Taberna, P.L., Daffos, B., Salanne, M., Simon, P.: ACS Nano 8(2), 1576 (2014)CrossRefGoogle Scholar
  26. 26.
    Péan, C., Daffos, B., Merlet, C., Rotenberg, B., Taberna, P.L., Simon, P., Salanne, M.: J. Electrochem. Soc. 162(5), A5091 (2015)CrossRefGoogle Scholar
  27. 27.
    Largeot, C., Portet, C., Chmiola, J., Taberna, P.L., Gogotsi, Y., Simon, P.: J. Am. Chem. Soc. 130(9), 2730 (2008). doi:10.1021/ja7106178 CrossRefGoogle Scholar
  28. 28.
    Merlet, C., Salanne, M., Rotenberg, B.: J. Phys. Chem. C 116(14), 7687 (2012). doi:10.1021/jp3008877. http://www.pubs.acs.org/doi/abs/10.1021/jp3008877
  29. 29.
    Andersen, H.C.: J. Comput. Phys. 51, 24 (1983)CrossRefGoogle Scholar
  30. 30.
  31. 31.
    Reed, S.K., Lanning, O.J., Madden, P.A.: J. Chem. Phys. 126(8), 084704 (2007). http://www.scitation.aip.org/content/aip/journal/jcp/126/8/10.1063/1.2464084 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Konrad Breitsprecher
    • 1
    Email author
  • Narayanan Krishnamoorthy Anand
    • 1
  • Jens Smiatek
    • 1
  • Christian Holm
    • 1
  1. 1.Institute for Computational PhysicsUniversity of StuttgartStuttgartGermany

Personalised recommendations