Coupled PIC-DSMC Simulations of a Laser-Driven Plasma Expansion

  • S. CopplestoneEmail author
  • P. Ortwein
  • C.-D. Munz
  • T. Binder
  • A. Mirza
  • P. Nizenkov
  • M. Pfeiffer
  • S. Fasoulas
Conference paper


In the field of material processing or spacecraft propulsion, laser ablation is used to remove material from a solid surface with a laser beam. The numerical study of this process has been directed towards direct laser-solid interactions, tackled by molecular dynamics simulations which have been conducted in the past. An additional field of interest arises, when considering the interaction of a laser beam and the plasma created by former laser impacts. For this purpose, an Message Passing Interface parallelized, high-order Particle-in-Cell scheme coupled with a Direct Simulation Monte Carlo method is used to handle the complex phenomena, which usually are simulated using disjoint techniques. The complete scheme is constructed to run on three-dimensional unstructured hexahedra, where for the Particle-in-Cell solver, a highly efficient discontinuous Galerkin method is used to calculate the electromagnetic field. Simulations under realistic settings require the use of high performance computing, where the parallel performance of the coupled solver plays the most important role. This work offers insight into such an undertaking by simulating the expansion of a plasma plume in three dimensions using this coupled algorithm.


Parallel Performance Message Passing Interface Direct Simulation Monte Carlo Spectral Element Method Load Imbalance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully acknowledge the Deutsche Forschungsgemeinschaft (DFG) for funding within the projects “Kinetic Algorithms for the Maxwell-Boltzmann System and the Simulation of Magnetospheric Propulsion Systems” and “Coupled PIC-DSMC-Simulation of Laser Driven Ablative Gas Expansions”. The latter being a sub project of the collaborative research center (SFB) 716 at the University of Stuttgart. Computational resources have been provided by the Bundes-Höchstleistungsrechenzentrum Stuttgart (HLRS).


  1. 1.
    Atak, M., Beck, A., Bolemann, T., Flad, D., Frank, H., Hindenlang, F., Munz, C.-D.: Discontinuous Galerkin for high performance computational fluid dynamics. In: Nagel, W.E., Kröner, D.H., Resch, M.M. (eds.) High Performance Computing in Science and Engineering ‘14, pp. 499–518. Springer International Publishing, New York (2015)Google Scholar
  2. 2.
    Baganoff, D., McDonald, J.D.: A collision selection rule for a particle simulation method suited to vector computers. Phys. Fluids A 2, 1248–1259 (1990)CrossRefGoogle Scholar
  3. 3.
    Bird, G.A.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford University Press, Oxford (1994)Google Scholar
  4. 4.
    Carpenter, M.H., Kennedy, C.A.: Fourth-order 2N-storage Runge-Kutta schemes. NASA Tech. Memo. 109112, 1–26 (1994)Google Scholar
  5. 5.
    Gassner, G., Kopriva, D.A.: A Comparison of the dispersion and dissipation errors of Gauss and Gauss-Lobatto discontinuous Galerkin spectral element methods. SIAM J. Sci. Comput. 33(5), 2560–2579 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Hockney, R.W., Eastwood, J.W.: Computer Simulation Using Particles. McGraw-Hill Inc., New York (1988)CrossRefzbMATHGoogle Scholar
  7. 7.
    Itina, T.E., Hermann, J., Delaporte, P., Sentis, M.: Laser-generated plasma plume expansion: combined continuous-microscopic modeling. Phys. Rev. E 66, 066406 (2002)CrossRefGoogle Scholar
  8. 8.
    Jacobs, G.B., Hesthaven, J.S.: High-order nodal discontinuous Galerkin particle-in-cell method on unstructured grids. J. Comput. Phys. 214(1), 96–121 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Mora, P.: Thin-foil expansion into a vacuum. Phys. Rev. E 72, 056401 (2005)CrossRefGoogle Scholar
  10. 10.
    Munz, C.-D., Schneider, R., Voß, U.: A finite-volume particle-in-cell method for the numerical simulation of devices in pulsed power technology. Surv. Math. Ind. 8, 243–257 (1999)zbMATHGoogle Scholar
  11. 11.
    Munz, C.-D., Auweter-Kurtz, M., Fasoulas, S., Mirza, A., Ortwein, P., Pfeiffer, M., Stindl, T.: Coupled particle-in-cell and direct simulation Monte Carlo method for simulating reactive plasma flows. C. R. Mec. 342(10–11), 662–670 (2014)CrossRefGoogle Scholar
  12. 12.
    Nedelea, T., Urbassek, H.M.: Particle-in-cell study of charge-state segregation in expanding plasmas due to three-body recombination. J. Phys. D Appl. Phys. 37(21), 2981 (2004)CrossRefGoogle Scholar
  13. 13.
    Oh, D.Y.: Computational Modeling of Expanding Plasma Plumes in Space Using a PIC-DSMC Algorithm. Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, Cambridge (1997)Google Scholar
  14. 14.
    Ortwein, P., Binder, T., Copplestone, S., Mirza, A., Nizenkov, P., Pfeiffer, M., Stindl, T., Fasoulas, S., Munz, C.-D.: Parallel performance of a discontinuous Galerkin spectral element method based PIC-DSMC solver. In: Nagel, W.E., Kröner, D.H., Resch, M.M. (eds.) High Performance Computing in Science and Engineering ‘14, pp. 671–681. Springer International Publishing, New York (2015)Google Scholar
  15. 15.
    Romagnani, L., Bulanov, S.V., Borghesi, M., Audebert, P., Gauthier, J.C., Löwenbrück, K., Mackinnon, A.J., Patel, P., Pretzler, G., Toncian, T., Willi, O.: Observation of collisionless shocks in laser-plasma experiments. Phys. Rev. Lett. 101, 025004 (2008)CrossRefGoogle Scholar
  16. 16.
    Sarri, G., Murphy, G.C., Dieckmann, M.E., Bret, A., Quinn, K., Kourakis, I., Borghesi, M., Drury, L.O.C., Ynnerman, A.: Two-dimensional particle-in-cell simulation of the expansion of a plasma into a rarefied medium. New J. Phys. 13(7), 073023 (2011)CrossRefGoogle Scholar
  17. 17.
    Serikov, V.V., Kawamoto, S., Nanbu, K.: Particle-in-cell plus direct simulation Monte Carlo (PIC-DSMC) approach for self-consistent plasma-gas simulations. IEEE Trans. Plasma Sci. 27(5), 1389–1398 (1999)CrossRefGoogle Scholar
  18. 18.
    Sonntag, S., Trichet Paredes, C., Roth, J., Trebin, H.-R.: Molecular dynamics simulations of cluster distribution from femtosecond laser ablation in aluminum. Appl. Phys. A 104(2), 559–565 (2011)CrossRefGoogle Scholar
  19. 19.
    Thaury, C., Mora, P., Héron, A., Adam, J.C.: Self-generation of megagauss magnetic fields during the expansion of a plasma. Phys. Rev. E 82, 016408 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • S. Copplestone
    • 1
    Email author
  • P. Ortwein
    • 1
  • C.-D. Munz
    • 1
  • T. Binder
    • 2
  • A. Mirza
    • 2
  • P. Nizenkov
    • 2
  • M. Pfeiffer
    • 2
  • S. Fasoulas
    • 2
  1. 1.Institute of Aerodynamics and Gas Dynamics (IAG)University of StuttgartStuttgartGermany
  2. 2.Institute of Space Systems (IRS)University of StuttgartStuttgartGermany

Personalised recommendations