Application of Large-Scale Phase-Field Simulations in the Context of High-Performance Computing

  • Johannes HötzerEmail author
  • Marcus Jainta
  • Marouen Ben Said
  • Philipp Steinmetz
  • Marco Berghoff
  • Britta Nestler
Conference paper


In material science, simulations became a common tool for the understanding of the underlying behaviour of different classes of materials. Due to the growing complexity of problems at hand, the simulation domains, and therefore the computational effort is steadily increasing. We presents various application of the phase-field method; ranging from the solidification of ternary eutectics and pure ice systems to the interaction of multiple liquid phases on fibers. All these topics have in common, that they need a large number of cores to investigate the decisive physical effects in adequate time. We show an overview of the results for this wide range of applications and the scaling behaviour of the used software frameworks.


Contact Line Simulation Domain Growth Front Fiber Radius Free Solidification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ben Said, M., Selzer, M., Nestler, B., Braun, D., Greiner, C., Garcke, H.: A phase-field approach for wetting phenomena of multiphase droplets on solid surfaces. Langmuir 30(14), 4033–4039 (2014)CrossRefGoogle Scholar
  2. 2.
    Berghoff, M., Nestler, B.: Scale-bridging phase-field simulations of microstructure responses on nucleation in metals and colloids. Eur. Phys. J. Spec. Top. 223(3), 409–419 (2014)CrossRefGoogle Scholar
  3. 3.
    Brakke, K.A.: The surface evolver. Exp. Math. 1(2), 141–165 (1992)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Carroll, B.J.: The accurate measurement of contact angle, phase contact areas, drop volume, and Laplace excess pressure in drop-on-fiber systems. J. Colloid Interf. Sci. 57(3), 488–495 (1976)CrossRefGoogle Scholar
  5. 5.
    Carroll, B.J.: Equilibrium conformations of liquid drops on thin cylinders under forces of capillarity. A theory for the roll-up process. Langmuir 2(2), 248–250 (1986)Google Scholar
  6. 6.
    Chou, T.H., Hong, S.J., Liang, Y.E., Tsao, H.K., Sheng, Y.J.: Equilibrium phase diagram of drop-on-fiber: coexistent states and gravity effect. Langmuir 27(7), 3685–3692 (2011)CrossRefGoogle Scholar
  7. 7.
    Choudhury, A.: Quantitative Phase-Field Model for Phase Transformations in Multi-component Alloys (Schriftenreihe des Instituts für Angewandte Materialien, Karlsruher Institut fuer Technologie). KIT Scientific Publishing, Karlsruhe (2013)Google Scholar
  8. 8.
    Ruiter, R.: Manipulation of Drops with Electrowetting: From Morphological Transitions to Microfluidics. Universiteit Twente (2014). doi:10.3990/1.9789036536394Google Scholar
  9. 9.
    Dennstedt, A., Ratke, L.: Microstructures of directionally solidified Al-Ag-Cu ternary eutectics. Trans. Indian Inst. Metals 65(6), 777–782 (2012)CrossRefGoogle Scholar
  10. 10.
    Dennstedt, A., Ratke, L., Choudhury, A., Nestler, B.: New metallographic method for estimation of ordering and lattice parameter in ternary eutectic systems. Metallogr. Microstruct. Anal. 2(3), 140–147 (2013)CrossRefGoogle Scholar
  11. 11.
    Dufour, R., Dibao-Dina, A., Harnois, M., Tao, X., Dufour, C., Boukherroub, R., Senez, V., Thomy, V.: Electrowetting on functional fibers. Soft Matter 9, 492–497 (2013)CrossRefGoogle Scholar
  12. 12.
    Eral, H.B., de Ruiter, J., de Ruiter, R., Oh, J.M., Semprebon, C., Brinkmann, M., Mugele, F.: Drops on functional fibers: from barrels to clamshells and back. Soft Matter 7(11), 5138 (2011)Google Scholar
  13. 13.
    Feichtinger, C., Habich, J., Köstler, H., Röde, U., Aoki, T.: Performance modeling and analysis of heterogeneous lattice Boltzmann simulations on CPU-GPU clusters. Parallel Comput. 46, 1–13 (2015)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Genau, A., Ratke, L.: Morphological characterization of the Al-Ag-Cu ternary eutectic. Int. J. Mater. Res. 103(4), 469–475 (2012)CrossRefGoogle Scholar
  15. 15.
    Gilet, T., Terwagne, D., Vandewalle, N.: Digital microfluidics on a wire. Appl. Phys. Lett. 95(1), 10–13 (2009)CrossRefGoogle Scholar
  16. 16.
    Gilet, T., Terwagne, D., Vandewalle, N.: Droplets sliding on fibres. Eur. Phys. J. E 31(3), 253–262 (2010)CrossRefGoogle Scholar
  17. 17.
    Godenschwager, C., Schornbaum, F., Bauer, M., Köstler, H., Rüde, U.: A framework for hybrid parallel flow simulations with a trillion cells in complex geometries. In: Proceedings of SC13: International Conference for High Performance Computing, Networking, Storage and Analysis, p. 35. ACM (2013)Google Scholar
  18. 18.
    Handel, R., Davidchack, R.L., Anwar, J., Brukhno, A.: Direct calculation of solid-liquid interfacial free energy for molecular systems: TIP4P ice-water interface. Phys. Rev. Lett. 100(3), 036104-1–036104-4 (2008)Google Scholar
  19. 19.
    Hecht, U., Gránásy, L., Pusztai, T., Böttger, B., Apel, M., Witusiewicz, V., Ratke, L., De Wilde, J., Froyen, L., Camel, D., et al.: Multiphase solidification in multicomponent alloys. Mater. Sci. Eng. R. Rep. 46(1), 1–49 (2004)Google Scholar
  20. 20.
    Hötzer, J., Jainta, M., Steinmetz, P., Dennstedt, A., Nestler, B.: Die Vielfalt der Musterbildung in Metallen. Horizonte 45 (2015)Google Scholar
  21. 21.
    Hötzer, J., Jainta, M., Steinmetz, P., Nestler, B., Dennstedt, A., Genau, A., Bauer, M., Köstler, H., Rüde, U.: Large scale phase-field simulations of directional ternary eutectic solidification. Acta Mater. 93, 194–204 (2015)CrossRefGoogle Scholar
  22. 22.
    Köstler, H., Feichtinger, C., Rüde, U., Aoki, T.: A geometric multigrid solver on Tsubame 2.0. In: Efficient Algorithms for Global Optimization Methods in Computer Vision, pp. 155–173. Springer, Berlin (2014)Google Scholar
  23. 23.
    Lewis, D., Allen, S., Notis, M., Scotch, A.: Determination of the eutectic structure in the Ag-Cu-Sn system. J. Electron. Mater. 31(2), 161–167 (2002)CrossRefGoogle Scholar
  24. 24.
    Langer, J.S., Müller-Krumbhaar, J.: Stability effects in dendritic crystal growth. J. Cryst. Growth 42, 11–14 (1977)CrossRefGoogle Scholar
  25. 25.
    Lismont, M., Vandewalle, N., Joris, B., Dreesen, L.: Fiber based optofluidic biosensors. Appl. Phys. Lett. 105(13), 133701 (2014)CrossRefGoogle Scholar
  26. 26.
    Maruyama, M.: Relation between growth and melt shapes of ice crystals. J. Cryst. Growth 318(1), 36–39 (2011)CrossRefGoogle Scholar
  27. 27.
    McHale, G., Newton, M.I.: Global geometry and the equilibrium shapes of liquid drops on fibers. Colloids Surf. A Physicochem. Eng. Asp. 206(1–3), 79–86 (2002)CrossRefGoogle Scholar
  28. 28.
    McHale, G., Käb, N., Newton, M., Rowan, S.: Wetting of a high-energy fiber surface. J. Colloid Interf. Sci. 186(2), 453–461 (1997)CrossRefGoogle Scholar
  29. 29.
    McHale, G., Newton, M.I., Carroll, B.J.: The shape and stability of small liquid drops on fibers. Oil Gas Sci. Technol. 56(1), 47–54 (2001)CrossRefGoogle Scholar
  30. 30.
    Moelans, N., Blanpain, B., Wollants, P.: An introduction to phase-field modeling of microstructure evolution. Calphad 32(2), 268–294 (2008)CrossRefGoogle Scholar
  31. 31.
    Nestler, B., Danilov, D., Galenko, P.: Crystal growth of pure substances: phase-field simulations in comparison with analytical and experimental results. J. Comput. Phys. 207(1), 221–239 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  32. 32.
    Requena, G., Cloetens, P., Altendorfer, W., Poletti, C., Tolnai, D., Warchomicka, F., Degischer, H.P.: Sub-micrometer synchrotron tomography of multiphase metals using kirkpatrick-baez optics. Scr. Mater. 61(7), 760–763 (2009)CrossRefGoogle Scholar
  33. 33.
    Ruggiero, M.A., Rutter, J.W.: Origin of microstructure in the 332 K eutectic of the Bi-In-Sn system. Mater. Sci. Technol. 13(1), 5–11 (1997)CrossRefGoogle Scholar
  34. 34.
    Steinbach, I.: Phase-field model for microstructure evolution at the mesoscopic scale. Annu. Rev. Mater. Res. 43(1), 89–107 (2013)CrossRefMathSciNetGoogle Scholar
  35. 35.
    Vondrous, A., Selzer, M., Hötzer, J., Nestler, B.: Parallel computing for phase-field models. Int. J. High Perform. Comput. Appl. 28(1), 61–72 (2014)CrossRefGoogle Scholar
  36. 36.
    Weyer, F., Ben Said, M., Hötzer, J., Berghoff, M., Dreesen, L., Nestler, B., Vandewalle, N.: Compound droplets on fibers. Langmuir 31(28), 7799–7805 (2015)CrossRefGoogle Scholar
  37. 37.
    Wu, X.F., Dzenis, Y.A.: Droplet on a fiber: geometrical shape and contact angle. Acta Mech. 185(3–4), 215–225 (2006)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Johannes Hötzer
    • 1
    • 2
    • 3
    Email author
  • Marcus Jainta
    • 1
    • 2
    • 3
  • Marouen Ben Said
    • 1
    • 2
    • 3
  • Philipp Steinmetz
    • 1
    • 2
    • 3
  • Marco Berghoff
    • 1
    • 2
    • 3
  • Britta Nestler
    • 1
    • 2
    • 3
  1. 1.Institute of Applied MaterialsReliability of Components and Systems (IAM-ZBS)KarlsruheGermany
  2. 2.Institute of Technology (KIT)KarlsruheGermany
  3. 3.Institute of Materials and ProcessesHochschule Karlsruhe Technik und WirtschaftKarlsruheGermany

Personalised recommendations