Advertisement

Toward a Discontinuous Galerkin Fluid Dynamics Framework for Industrial Applications

  • Sebastian Boblest
  • Fabian Hempert
  • Malte Hoffmann
  • Philipp Offenhäuser
  • Matthias Sonntag
  • Filip Sadlo
  • Colin W. Glass
  • Claus-Dieter Munz
  • Thomas Ertl
  • Uwe Iben
Conference paper

Abstract

For many years, discontinuous Galerkin (DG) methods have been proving their value as highly efficient, very well scalable high-order methods for computational fluid dynamics (CFD) calculations. However, they have so far mainly been applied in the academic environment and the step toward an application in industry is still waited for. In this article, we report on our project that aims at creating a comprehensive CFD software that makes highly resolved unsteady industrial DG calculations an option. First, our focus lies on the adaptation of the solver itself to industrial problems and the optimization of the parallelization efficiency. Second, we present a visualization tool specifically tailored to the properties of DG data that will be combined with the solver to obtain an in-situ visualization strategy within our project in the near future.

Keywords

Computational Fluid Dynamic Sound Pressure Level Discontinuous Galerkin Spectral Element Method Noise Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work is supported by the Federal Ministry of Education and Research (BMBF) within the HPC III project HONK “Industrialization of high-resolution numerical analysis of complex flow phenomena in hydraulic systems”.

References

  1. 1.
    Ducros, F., Ferrand, V., Nicoud, F., Weber, C., Darracq, D., Gacherieu, C., Poinsot, T.: Large-eddy simulation of the shock/turbulence interaction. J. Comput. Phys. 152(2), 517–549 (1999)CrossRefMATHGoogle Scholar
  2. 2.
    Flad, D.G., Frank, H.M., Beck, A.D., Munz, C.-D.: A discontinuous Galerkin spectral element method for the direct numerical simulation of aeroacoustics. In: Proceedings of the American Institute of Aeronautics and Astronautics (2014)CrossRefGoogle Scholar
  3. 3.
    Hempert, F., Hoffmann, M., Iben, U., Munz, C.-D.: On the simulation of industrial gas dynamic applications with the discontinuous Galerkin spectral element method. In: Proceedings of the 12th International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows (2015)Google Scholar
  4. 4.
    Hindenlang, F., Gassner, G., Altmann, C., Beck, A., Staudenmaier, M., Munz, C.-D.: Explicit discontinuous Galerkin methods for unsteady problems. Comput. Fluids 61, 86–93 (2012)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Kraus, T., Hindenlang, F., Harlacher, D.F., Munz, C.-D., Roller, S.: Direct aeroacoustic simulation of near field noise during a gas injection process with a discontinuous Galerkin approach. In: Proceedings of the 33rd AIAA Aeroacoustics Conference (2012)Google Scholar
  6. 6.
    Persson, P.-O., Peraire, J.: Sub-cell shock capturing for discontinuous Galerkin methods. In: Proceedings of the American Institute of Aeronautics and Astronautics, vol. 112 (2006)Google Scholar
  7. 7.
    Pruett, C., Thomas, B., Grosch, C., Gatski, T.: A temporal approximate deconvolution model for large-eddy simulation. Phys. Fluids 18(2), 8104 (2006)CrossRefGoogle Scholar
  8. 8.
    Robert, B.G.: One million natural gas injection valves produced, Press Release (2010)Google Scholar
  9. 9.
    Schmidt, A.: Experimentelle Untersuchung einer Gasströmung durch ein CNG-Injektorventil mittels Particle-Image-Velocimetry (PIV). Master’s thesis, Institute of Mechanics of the University of Kassel (2012)Google Scholar
  10. 10.
    Sonntag, M., Munz, C.-D.: Shock capturing for discontinuous Galerkin methods using finite volume subcells. In: Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems. Springer Proceedings in Mathematics & Statistics, vol. 78, pp. 945–953. Springer, Berlin (2014)Google Scholar
  11. 11.
    Üffinger, M., Frey, S., Ertl, T.: Interactive high-quality visualization of higher-order finite elements. Comput. Graphics Forum 29(2), 337–346 (2010)CrossRefGoogle Scholar
  12. 12.
    Utkarsh A.: The ParaView Guide. Kitware Inc. www.kitware.com (2015)

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Sebastian Boblest
    • 1
  • Fabian Hempert
    • 2
  • Malte Hoffmann
    • 3
  • Philipp Offenhäuser
    • 4
  • Matthias Sonntag
    • 3
  • Filip Sadlo
    • 5
  • Colin W. Glass
    • 4
  • Claus-Dieter Munz
    • 3
  • Thomas Ertl
    • 1
  • Uwe Iben
    • 2
  1. 1.Visualization Research CenterUniversity of StuttgartStuttgartGermany
  2. 2.Robert Bosch GmbHRenningenGermany
  3. 3.Institute for Aerodynamics and Gas dynamicsUniversity of StuttgartStuttgartGermany
  4. 4.High Performance Computing CenterUniversity of StuttgartStuttgartGermany
  5. 5.Interdisciplinary Center for Scientific ComputingHeidelberg UniversityHeidelbergGermany

Personalised recommendations