Atomistic Simulation of Oligoelectrolyte Multilayers Growth

  • Pedro A. SánchezEmail author
  • Jens Smiatek
  • Baofu Qiao
  • Marcello Sega
  • Christian Holm
Conference paper


We simulate at the atomistic scale the layer-by-layer growth of a four layers thin film of poly(diallyl dimethyl ammonium chloride)/poly(styrene sulfonate sodium salt) oligomers adsorbed on a silica substrate. The simulation is intended to provide atomistic details on the structure of a swollen multilayer in solutions with different concentrations of added salt ions. The scale of the simulated system has been chosen to produce, at a minimum computing cost, a reasonable estimation of some selected mesoscopic structural parameters that are measurable with current experimental techniques.


Atomistic Simulation Coverage Fraction Multilayer Thin Film Simulation Protocol Diallyl Dimethyl Ammonium Chloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge the Deutsche Forschungsgemeinschaft (DFG) within the Priority Program SSP 1369 for its financial support to this research.


  1. 1.
    Ariga, K., Hill, J.P., Ji, Q.: Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys. Chem. Chem. Phys. 9(19), 2319–2340 (2007)CrossRefGoogle Scholar
  2. 2.
    Arsenault, A.C., Halfyard, J., Wang, Z., Kitaev, V., Ozin, G.A., Manners, I., Mihi, A., Miguez, H.: Tailoring photonic crystals with nanometer-scale precision using polyelectrolyte multilayers. Langmuir 21(2), 499–503 (2005)CrossRefGoogle Scholar
  3. 3.
    Behrens, S.H., Grier, D.G.: The charge of glass and silica surfaces. J. Chem. Phys. 115(14), 6716–6721 (2001)CrossRefGoogle Scholar
  4. 4.
    Berendsen, H.J.C., Grigera, J.R., Straatsma, P.T.: The missing term in effective pair potentials. J. Phys. Chem. 91, 6269–6271 (1987)CrossRefGoogle Scholar
  5. 5.
    Block, S., Helm, C.A.: Single polyelectrolyte layers adsorbed at high salt conditions: Polyelectrolyte brush domains coexisting with flatly adsorbed chains. Macromolecules 42(17), 6733–6740 (2009)CrossRefGoogle Scholar
  6. 6.
    Bruening, M.L., Dotzauer, D.M., Jain, P., Ouyang, L., Baker, G.L.: Creation of functional membranes using polyelectrolyte multilayers and polymer brushes. Langmuir 24(15), 7663–7673 (2008)CrossRefGoogle Scholar
  7. 7.
    Cerdà, J.J., Qiao, B., Holm, C.: Modeling strategies for polyelectrolyte multilayers. Eur. Phys. J. Special Topics 177, 129–148 (2009)CrossRefGoogle Scholar
  8. 8.
    Cerdà, J.J., Qiao, B., Holm, C.: Understanding polyelectrolyte multilayers: an open challenge for simulations. Soft Matter 5(22), 4412–4425 (2009)CrossRefGoogle Scholar
  9. 9.
    Cerdà, J.J., Holm, C., Qiao, B.: Modeling the Structure and Dynamics of Polyelectrolyte Multilayers, chapter 5, 1st edn. pp. 121–166. Wiley, Hoboken, NJ (2012)Google Scholar
  10. 10.
    Chiarelli, P.A., Johal, M.S., Casson, J.L., Roberts, J.B., Robinson, J.M., Wang, H.-L.: Controlled fabrication of polyelectrolyte multilayer thin films using spin-assembly. Adv. Mater. 13(15), 1167–1171 (2001). ISSN 1521–4095Google Scholar
  11. 11.
    Cho, J., Char, K., Hong, J.-D., Lee, K.-B.: Fabrication of highly ordered multilayer films using a spin self-assembly method. Adv. Mater. 13(14), 1076–1078 (2001)CrossRefGoogle Scholar
  12. 12.
    Darden, T., York, D., Pedersen, L.: Particle Mesh Ewald: An \(N\log (N)\) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993)CrossRefGoogle Scholar
  13. 13.
    Datta, S., Cecil, C., Bhattacharyya, D.: Functionalized membranes by layer-by-layer assembly of polyelectrolytes and in situ polymerization of acrylic acid for applications in enzymatic catalysis. Ind. Eng. Chem. Res. 47(14), 4586–4597 (2008)CrossRefGoogle Scholar
  14. 14.
    Decher, G.: Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(5330), 1232–1237 (1997)CrossRefGoogle Scholar
  15. 15.
    Decher, G., Schlenoff, J.B. (eds.): Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials, 2nd edn. Wiley, New York (2012)Google Scholar
  16. 16.
    Decher, G., Hong, J., Schmitt, J.: Buildup of ultrathin multilayer films by a self-assembly process: Iii. consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 210–211, 831–835 (1992)CrossRefGoogle Scholar
  17. 17.
    Dubas, S.T., Schlenoff, J.B.: Factors controlling the growth of polyelectrolyte multilayers. Macromolecules 32(24), 8153–8160 (1999)CrossRefGoogle Scholar
  18. 18.
    Dubas, S.T., Schlenoff, J.B.: Swelling and smoothing of polyelectrolyte multilayers by salt. Langmuir 17(25), 7725–7727 (2001)CrossRefGoogle Scholar
  19. 19.
    Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., Pedersen, L.: A smooth Particle Mesh Ewald method. J. Chem. Phys. 103, 8577 (1995)CrossRefGoogle Scholar
  20. 20.
    Garg, A., Heflin, J.R., Gibson, H.W., Davis, R.M.: Study of film structure and adsorption kinetics of polyelectrolyte multilayer films: effect of pH and polymer concentration. Langmuir 24(19), 10887–10894 (2008)CrossRefGoogle Scholar
  21. 21.
    Glinel, K., Moussa, A., Jonas, A.M., Laschewsky, A.: Influence of polyelectrolyte charge density on the formation of multilayers of strong polyelectrolytes at low ionic strength. Langmuir 18(4), 1408–1412 (2002)CrossRefGoogle Scholar
  22. 22.
    Gopinathan, A., Kim, Y.W., Gopinathan, A., Kim, Y.W.: Polymer translocation in crowded environments. Phys. Rev. Lett. 99, 228106 (2007)CrossRefGoogle Scholar
  23. 23.
    Gopinadhan, M., Ivanova, O., Ahrens, H., Günther, J.-U., Steitz, R., Helm, C.A.: The influence of secondary interactions during the formation of polyelectrolyte multilayers: layer thickness, bound water and layer interpenetration. J. Phys. Chem. B 111(29), 8426–8434 (2007)CrossRefGoogle Scholar
  24. 24.
    Gribova, V., Auzely-Velty, R., Picart, C.: Polyelectrolyte multilayer assemblies on materials surfaces: From cell adhesion to tissue engineering. Chem. Mater. 24(5), 854–869 (2012)CrossRefGoogle Scholar
  25. 25.
    Haitami, A.E.E., Martel, D., Ball, V., Nguyen, H.C., Gonthier, E., Labb e, P., Voegel, J., Schaaf, P., Senger, B., Boulmedais, F.: Effect of the supporting electrolyte anion on the thickness of PSS/PAH multilayer films and on their permeability to an electroactive probe. Langmuir 25(4), 2282–2289 (2009)Google Scholar
  26. 26.
    Hess, B., Bekker, H., Berendsen, H.J.C., Fraaije, J.G.E.M.: LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997)CrossRefGoogle Scholar
  27. 27.
    Hess, B., Holm, C., van der Vegt, N.: Modeling multi-body effects in ionic solutions with a concentration dependent dielectric permittivity. Phys. Rev. Lett. 96, 147801 (2006)CrossRefGoogle Scholar
  28. 28.
    Hess, B., Holm, C., van der Vegt, N.: Osmotic coefficients of atomistic NaCl (aq) force-fields. J. Chem. Phys. 124, 164509 (2006)CrossRefGoogle Scholar
  29. 29.
    Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E.: GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4(3), 435–447 (2008)CrossRefGoogle Scholar
  30. 30.
    Ho, T.A., Argyris, D., Papavassiliou, D.V., Striolo, A.: Interfacial water on crystalline silica: a comparative molecular dynamics simulation study. Mol. Simul. 37, 172–195 (2011)CrossRefGoogle Scholar
  31. 31.
    Hoda, N., Larson, G.R.: Modeling the buildup of exponentially growing polyelectrolyte multilayer films. J. Phys. Chem. B 113(13), 4232–4241 (2009)CrossRefGoogle Scholar
  32. 32.
    Izvekov, S., Voth, G.A.: Multiscale coarse graining of liquid-state systems. J. Chem. Phys. 123(13), 134105 (2005)CrossRefGoogle Scholar
  33. 33.
    Jiang, L., Lu, F., Chang, Q., Liu, Y., Liu, H., Li, Y., Xu, W., Cui, G., Zhuang, J., Li, X.: Fabrication of ultrathin films with large third-order nonlinear optical properties. Chem. Phys. Chem. 6(3), 481–486 (2005)Google Scholar
  34. 34.
    Jorgensen, W.L., Maxwell, D.S., Tirado-Rives, J.: Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc., 118(45), 11225–11236 (1996)CrossRefGoogle Scholar
  35. 35.
    Khopade, A.J., Arulsudar, N., Khopade, S.A., Hartmann, J.: Ultrathin antibiotic walled microcapsules. Biomacromolecules 6(1), 229–234 (2005)CrossRefGoogle Scholar
  36. 36.
    Kolasinska, M., Krastev, R., Gutberlet, T., Warszynski, P.: Layer-by-layer deposition of polyelectrolytes. dipping versus spraying. Langmuir 25(2), 1224–1232 (2009)Google Scholar
  37. 37.
    Kovacevic, D., van der Burgh, S., de Keizer, A., Stuart, M.A.C.: Kinetics of formation and dissolution of weak polyelectrolyte multilayers: role of salt and free polyions. Langmuir 18(14), 5607–5612 (2002)CrossRefGoogle Scholar
  38. 38.
    Lavalle, P., Gergely, C., Cuisinier, F.J.G., Decher, G., Schaaf, P., Voegel, J.C., Picart, C.: Comparison of the structure of polyelectrolyte multilayer films exhibiting a linear and an exponential growth regime: an in situ atomic force microscopy study. Macromolecules 35(11), 4458–4465 (2002)CrossRefGoogle Scholar
  39. 39.
    Lavalle, P., Picart, C., Mutterer, J., Gergely, C., Reiss, H., Voegel, J.-C., Senger, B., and Schaaf, P. Modeling the buildup of polyelectrolyte multilayer films having exponential growth. J. Phys. Chem. B 108(2), 635–648 (2004)CrossRefGoogle Scholar
  40. 40.
    Lyubartsev, A.P., Laaksonen, A.: Calculation of effective interaction potentials from radial distribution functions: a reverse monte carlo approach. Phys. Rev. E 52, 3730–3737 (1995)CrossRefGoogle Scholar
  41. 41.
    Lyubartsev, A.P., Marčelja, S.: Evaluation of effective ion-ion potentials in aqueous electrolytes. Phys. Rev. E 65(4), 041202 (2002)CrossRefGoogle Scholar
  42. 42.
    Malaisamy, R., Bruening, M.L.: High-flux nanofiltration membranes prepared by adsorption of multilayer polyelectrolyte membranes on polymeric supports. Langmuir 21(23), 10587–10592 (2005)CrossRefGoogle Scholar
  43. 43.
    Martínez, L., Andrade, R., Birgin, E.G., Martínez, J.M.: PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009)CrossRefGoogle Scholar
  44. 44.
    McAloney, R.A., Sinyor, M., Dudnik, V., Goh, M.C.: Atomic force microscopy studies of salt effects on polyelectrolyte multilayer film morphology. Langmuir 17, 6655–6663 (2001)CrossRefGoogle Scholar
  45. 45.
    McAloney, R.A., Dudnik, V., Goh, M.C.: Kinetics of salt-induced annealing of a polyelectrolyte multilayer film morphology. Langmuir 19(9), 3947–3952 (2003)CrossRefGoogle Scholar
  46. 46.
    Messina, R.: Polyelectrolyte multilayering on a charged planar surface. Macromolecules 37(2), 621–629 (2004)CrossRefMathSciNetGoogle Scholar
  47. 47.
    Messina, R., Holm, C., Kremer, K.: Polyelectrolyte adsorption and multilayering on charged colloidal particles. J. Polym. Sci. Part B: Polym. Phys. 42, 3557 (2004)CrossRefGoogle Scholar
  48. 48.
    Micciulla, S., Sánchez, P.A., Smiatek, J., Qiao, B., Sega, M., Laschewsky, A., Holm, C., von Klitzing, R.: Layer-by-layer formation of oligoelectrolyte multilayers: a combined experimental and computational study. Soft Materials 12, S14–S21 (2014)CrossRefGoogle Scholar
  49. 49.
    Micciulla, S., Dodoo, S., Chevigny, C., Laschewsky, A., von Klitzing, R.: Short versus long chain polyelectrolyte multilayers: a direct comparison of self-assembly and structural properties. Phys. Chem. Chem. Phys. 16, 21988–21998 (2014)CrossRefGoogle Scholar
  50. 50.
    Miyamoto, S., Kollman, A.P.: Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 13, 952–962 (1992)CrossRefGoogle Scholar
  51. 51.
    Müller, M., Meier-Haack, J., Schwarz, S., Buchhammer, H., Eichhorn, E., Janke, A., Kessler, B., Nagel, J., Oelmann, M., Reihs, T., Lunkwitz, K.: Polyelectrolyte multilayers and their interactions. J. Adhes. 80(6), 521–547 (2004)CrossRefGoogle Scholar
  52. 52.
    Nosé, S., Klein, M.L.: Constant pressure molecular dynamics for molecular systems. Mol. Phys. 50(5), 1055–1076 (1983)CrossRefGoogle Scholar
  53. 53.
    Parrinello, M., Rahman, A.: Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981)CrossRefGoogle Scholar
  54. 54.
    Patel, P.A., Jeon, J., Mather, P.T., Dobrynin, A.V.: Molecular dynamics simulations of layer-by-layer assembly of polyelectrolytes at charged surfaces: Effects of chain degree of polymerization and fraction of charged monomers. Langmuir 21(13), 6113–6122 (2005)CrossRefGoogle Scholar
  55. 55.
    Patel, P.A., Jeon, J., Mather, P.T., Dobrynin, A.V.: Molecular dynamics simulations of multilayer polyelectrolyte films: effect of electrostatic and short-range interactions. Langmuir 22(24), 9994–10002 (2006)CrossRefGoogle Scholar
  56. 56.
    Picart, C., Mutterer, J., Richert, L., Luo, Y., Prestwich, G.D., Schaaf, P., Voegel, J.-C., Lavalle, P.: Molecular basis for the explanation of the exponential growth of polyelectrolyte multilayers. Proc. Natl. Acad. Sci. USA 99(20), 12531–12535 (2002)CrossRefGoogle Scholar
  57. 57.
    Qiao, B., Cerdà, J.J., Holm, C.: Poly(styrenesulfonate)-poly(diallyldimethylammonium) mixtures: toward the understanding of polyelectrolyte complexes and multilayers via atomistic simulations. Macromolecules 43(18), 7828–7838 (2010)CrossRefGoogle Scholar
  58. 58.
    Qiao, B., Cerdà, J.J., Holm, C.: Atomistic study of surface effects on polyelectrolyte adsorption: case study of a poly(styrenesulfonate) monolayer. Macromolecules 44(6), 1707–1718 (2011)CrossRefGoogle Scholar
  59. 59.
    Qiao, B., Sega, M., Holm, C.: An atomistic study of a poly(styrene sulfonate)/poly(diallyldimethylammonium) bilayer: the role of surface properties and charge reversal. Phys. Chem. Chem. Phys. 13(36), 16336–16342 (2011)CrossRefGoogle Scholar
  60. 60.
    Qiao, B.-F., Sega, M., Holm, C.: Properties of water in the interfacial region of a polyelectrolyte bilayer adsorbed onto a substrate studied by computer simulations. Phys. Chem. Chem. Phys. 14, 11425–11432 (2012)CrossRefGoogle Scholar
  61. 61.
    Reddy, G., Yethiraj, A.: Solvent effects in polyelectrolyte adsorption: computer simulations with explicit and implicit solvent. J. Chem. Phys. 132(7), 074903 (2010)CrossRefGoogle Scholar
  62. 62.
    Reith, D., Pütz, M., Müller-Plathe, F.: Deriving effective mesoscale potentials from atomistic simulations. J. Comput. Chem. 24(13), 1624–1636 (2003)CrossRefGoogle Scholar
  63. 63.
    Riegler, H., Essler, F.: Polyelectrolytes. 2. intrinsic or extrinsic charge compensation? quantitative charge analysis of PAH/PSS multilayers. Langmuir 18(17), 6694–6698 (2002)Google Scholar
  64. 64.
    Roiter, Y., Trotsenko, O., Tokarev, V., Minko, S.: Single molecule experiments visualizing adsorbed polyelectrolyte molecules in the full range of mono- and divalent counterion concentrations. J. Am. Chem. Soc. 132(39), 13660–13662 (2010)CrossRefGoogle Scholar
  65. 65.
    Salomäki, M., Kankare, J.: Specific anion effect in swelling of polyelectrolyte multilayers. Macromolecules 41(12), 4423–4428 (2008)CrossRefGoogle Scholar
  66. 66.
    Salomaki, M., Laiho, T., Kankare, J.: Counteranion-controlled properties of polyelectrolyte multilayers. Macromolecules 37(25), 9585–9590 (2004)CrossRefGoogle Scholar
  67. 67.
    Schlenoff, J.B.: Retrospective on the future of polyelectrolyte multilayers. Langmuir 25(24), 14007–14010 (2009)CrossRefGoogle Scholar
  68. 68.
    Schlenoff, J.B., Dubas, S.T., Farhat, T.: Sprayed polyelectrolyte multilayers. Langmuir 16(26), 9968–9969 (2000)CrossRefGoogle Scholar
  69. 69.
    Schoeler, B., Poptoshev, E., Caruso, F.: Growth of multilayer films of fixed and variable charge density polyelectrolytes: effect of mutual charge and secondary interactions. Macromolecules 36(14), 5258–5264 (2003)CrossRefGoogle Scholar
  70. 70.
    Schönhoff, M.: Self-assembled polyelectrolyte multilayers. Curr. Opin. Colloid Interface Sci. 8, 86–95 (2003)CrossRefGoogle Scholar
  71. 71.
    Schönhoff, M., Ball, V., Bausch, A.R., Dejugnat, C., Delorme, N., Glinel, K., von Klitzing, R., Steitz, R.: Hydration and internal properties of polyelectrolyte multilayers. Colloids Surf. A 303(1–2), 14–29 (2007)CrossRefGoogle Scholar
  72. 72.
    Shin, Y., Roberts, J.E., Santore, M.M.: The relationship between polymer/substrate charge density and charge overcompensation by adsorbed polyelectrolyte layers. J. Colloid Interface Sci. 247(1), 220–30 (2002)CrossRefGoogle Scholar
  73. 73.
    Smiatek, J., Sega, M., Holm, C., Schiller, U.D., Schmid, F.: Mesoscopic simulations of the counterion-induced electro-osmotic flow: a comparative study. J. Chem. Phys. 130(24), 244702 (2009)CrossRefGoogle Scholar
  74. 74.
    Tanchak, O.M., Yager, K.G., Fritzsche, H., Harroun, T., Katsaras, J., Barrett, C.J.: Ion distribution in multilayers of weak polyelectrolytes: a neutron reflectometry study. J. Chem. Phys. 129(8), 084901 (2008)CrossRefGoogle Scholar
  75. 75.
    Thierry, B., Winnik, F.M., Merhi, Y., Tabrizian, M.: Nanocoatings onto arteries via layer-by-layer deposition: toward the in vivo repair of damaged blood vessels. J. Am. Chem. Soc. 125(25), 7494–5 (2003)CrossRefGoogle Scholar
  76. 76.
    Trau, D., Renneberg, R.: Encapsulation of glucose oxidase microparticles within a nanoscale layer-by-layer film: immobilization and biosensor applications. Biosens. Bioelectron. 18(12), 1491–1499 (2003)CrossRefGoogle Scholar
  77. 77.
    Tschöp, W., Kremer, K., Batoulis, J., Bürger, T., Hahn, O.: Simulation of polymer melts. ii. from coarse-grained models back to atomistic description. Acta Polymer. 49, 75–79 (1998)Google Scholar
  78. 78.
    von Klitzing, R., Wong, J.E., Jäger, W., Steitz, R.: Short range interactions in polyelectrolyte multilayers. Curr. Opin. Colloid Interface Sci. 9(1–2), 158–162 (2004)CrossRefGoogle Scholar
  79. 79.
    Yeh, I.-C., Berkowitz, M.L.: Ewald summation for systems with slab geometry. J. Chem. Phys. 111(7), 3155–3162 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Pedro A. Sánchez
    • 1
    Email author
  • Jens Smiatek
    • 2
  • Baofu Qiao
    • 3
  • Marcello Sega
    • 1
  • Christian Holm
    • 2
  1. 1.University of ViennaWienAustria
  2. 2.Institute for Computational PhysicsUniversität StuttgartStuttgartGermany
  3. 3.Chemical Sciences and Engineering DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations