Large-Scale Modeling of Defects in Advanced Oxides: Oxygen Vacancies in BaZrO3 Crystals

  • Marco ArrigoniEmail author
  • Eugene A. Kotomin
  • Joachim Maier
Conference paper


Quantum mechanical simulations have proved to be an accurate tool in the description and characterization of point defects which can substantially alter the physical and chemical properties of oxides and their applications, e.g. in fuel cells and permeation membranes. Accurate simulations should take into account both the defect energetics in the real material and the thermodynamic effects at finite temperatures. We studied and compared here the structural, electronic and thermodynamic properties of the neutral \(\mathrm{(v_{O}^{\times })}\) and the positively doubly charged \(\mathrm{(v_{O}^{\bullet \bullet })}\) oxygen vacancies in bulk BaZrO3; particular emphasis was given in the evaluation of the contribution of lattice vibrations on the defect thermodynamic properties. The large-scale computer calculations were performed within the linear combination of atomic orbitals (LCAO) approach and the hybrid of Hartree-Fock method and density functional theory (HF-DFT). It is shown that phonons contribute significantly to the formation energy of the charged oxygen vacancy at high temperatures (\(\sim\) 1 eV at 1000 K), due to the large lattice distortion brought by this defect and thus their neglect would lead to a considerable error.


Oxygen Vacancy Conduction Band Bottom Vibrational Contribution Electron Chemical Potential Barium Zirconate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors greatly appreciated help and support from the High Performance Computer Center in Stuttgart (HLRS, project DEFTD 12939).


  1. 1.
    Walsch, A., Sokol, A., Catlow, C.R.A.: Energy storage: rechargeable lithium batteries. In: Computational Approaches to Energy Materials. Wiley, New York (2013)Google Scholar
  2. 2.
    Kuklja, M.M., Kotomin, E.A., Merkle, R., Mastrikov, Yu.A., Maier, J.: Combined theoretical and experimental analysis of processes determining cathode performance in solid oxide fuel cells. Phys. Chem. Chem. Phys. 15, 5443–5471 (2013)CrossRefGoogle Scholar
  3. 3.
    Donnerberg, H.J.: Atomic Simulations of Electro-Optical and Magneto-Optical Materials. Springer Tracts in Modern Physics. Springer, Berlin (1999)Google Scholar
  4. 4.
    Scott, J.F., Dawber, M.: Oxygen-vacancy ordering as a fatigue mechanism in perovskite ferroelectrics. App. Phys. Lett. 76, 3801–3803 (2000)CrossRefGoogle Scholar
  5. 5.
    Hwang, H.Y.: Perovskites: oxygen vacancies shine blue. Nat. Mater. 4, 803–804 (2005)CrossRefGoogle Scholar
  6. 6.
    Merkle, R., Maier, J.: How is oxygen incorporated into oxides? A comprehensive kinetic study of a simple solid-state reaction with SrTiO3 as a model material. Angew. Chem. Int. Ed. 47, 3874–3894 (2008)CrossRefGoogle Scholar
  7. 7.
    Sundell, P.G., Björketun, M.E., Wahnström, G.: Thermodynamics of doping and vacancy formation in BaZrO3 perovskite oxide from density functional calculations. Phys. Rev. B 73, 104112 (2006)CrossRefGoogle Scholar
  8. 8.
    Akbarzadeh, A.R., Kornev, I., Malibert, C., Bellaiche, L., Kiat, J.M.: Combined theoretical and experimental study of the low-temperature properties of BaZrO3. Phys. Rev. B 72, 205104 (2005)CrossRefGoogle Scholar
  9. 9.
    Bilić, A., Gale, J.D.: Gale: Ground state structure of BaZrO3: a comparative first-principles study. Phys. Rev. B 79, 174107 (2009)CrossRefGoogle Scholar
  10. 10.
    Magyari-Köpe, B., Vitos, L., Grimvall, G., Johansson, B., Kollár, J.: Low-temperature crystal structure of CaSiO3 perovskite: an ab initio total energy study. Phys. Rev. B 65, 193107 (2002)CrossRefGoogle Scholar
  11. 11.
    Evarestov, R.A.: Hybrid density functional theory LCAO calculations on phonons in Ba(Ti,Zr,Hf)3. Phys. Rev. B 83, 014105 (2011)CrossRefGoogle Scholar
  12. 12.
    Perdew, J.P., Ernzerhof, M., Burke, K.: Generalized gradient approximation made simple. J. Chem. Phys. 105, 9982–9985 (1996)CrossRefGoogle Scholar
  13. 13.
    Zhang, S.B., Northrup, J.E.: Chemical potential dependence of defect formation energies in GaAs: application to Ga self-diffusion. Phys. Rev. Lett. 67, 2339–2342 (1991)CrossRefGoogle Scholar
  14. 14.
    Dovesi, R., Saunders, V.R., Roetti, R.O.C., Zicovich-Wilson, C.M., Pascale, F., Civalleri, B., Doll, K., Harrison, N.M., Bush, I.J., D’Arco, P., Llunell, M., Causà, M., Noël, Y.: CRYSTAL14 User’s Manual University of Torino, Torino (2014)Google Scholar
  15. 15.
    Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C.M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D’Arco, P., Noël, Y., Causà, M., Rérat, M., Kirtman, B.: CRYSTAL14: a program for the ab initio investigation of crystalline solids. Int. J. Quant. Chem. 114, 1287–1317 (2014)CrossRefGoogle Scholar
  16. 16.
    Monkhorst, H.J., Pack, J.D: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Pies, W., Weiss, A.: Landolt–Börnstein. Numerical data and functional relationships in science and technology, Group III. In: Crystal and Solid State Physics, Vol. 7. Crystal Structure Data of Inorganic Compounds. Parts a and g. A. Acta Cryst. A. International Union of Crystallography (1975)Google Scholar
  18. 18.
    Robertson, J.: Band offsets of wide-band-gap oxides and implications for future electronic devices. J. Vac. Sci. Technol. B 18, 1785–1791 (2000)CrossRefGoogle Scholar
  19. 19.
    Eglitis, R.I.: Ab initio calculations of the atomic and electronic structure of BaZrO3 (111) surfaces. Solid State Ionics 230, 43–47 (2013)CrossRefGoogle Scholar
  20. 20.
    Parida, S., Rout, S.K., Cavalcante, L.S., Sinha, E., Li, M.S., Subramanian, V., Gupta, N., Gupta, V.R., Varela, J.A., Longo, E.: Structural refinement, optical and microwave dielectric properties of BaZrO3. Ceram. Int. 38, 2129–2138 (2012)CrossRefGoogle Scholar
  21. 21.
    Perry, C.H., McCarthy, D.J., Rupprecht, G.: Dielectric dispersion of some perovskite zirconates. Phys. Rev. 138, A1537–A1538 (1965)CrossRefGoogle Scholar
  22. 22.
    Zhukovskii, Y.F., Kotomin, E.A., Piskunov, S., Ellis, D.E.: A comparative ab initio study of bulk and surface oxygen vacancies in PbTiO3, PbZrO3 and SrTiO3 perovskites. Solid State Commun. 149, 1359–1362 (2009)CrossRefGoogle Scholar
  23. 23.
    Evarestov, R., Blokhin, E., Gryaznov, D., Kotomin, E.A., Merkle, R., Maier, J.: Jahn-Teller effect in the phonon properties of defective SrTiO3 from first principles. Phys. Rev. B, 85, 174303 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Marco Arrigoni
    • 1
    Email author
  • Eugene A. Kotomin
    • 1
  • Joachim Maier
    • 1
    • 2
  1. 1.Max Planck Institute for Solid State ResearchStuttgartGermany
  2. 2.Institute for Solid State PhysicsUniversity of LatviaRigaLatvia

Personalised recommendations