Molecular Anatomy of an Ion Channel Explored Utilizing Fluorescence Spectroscopy

  • Arunima Chaudhuri
  • Amitabha ChattopadhyayEmail author
Part of the Reviews in Fluorescence book series (RFLU, volume 8)


Ion channels are transmembrane proteins and represent important cellular components that connect the inside of the cell to its outside in a selective fashion. The linear ion channel peptide gramicidin serves as an excellent prototype for monitoring the organization, dynamics and function of membrane-spanning channels due to a variety of reasons. The fluorescent tryptophan residues in gramicidin channels are crucial for establishing and maintaining the structure and function of the channel in the membrane bilayer. In this review, we have highlighted a variety of representative fluorescence-based approaches to gain molecular insight into gramicidin conformations. Since gramicidin shares common structural features with more complex ion channels, the results from fluorescence-based studies with gramicidin could be relevant for more complex ion channels.


Ion channel Gramicidin REES Tryptophan Membrane interface 



Work in A.C.’s laboratory was supported by the Council of Scientific and Industrial Research and Department of Science and Technology (Govt. of India). Ar.C. thanks the Council of Scientific and Industrial Research for the award of a Research Associateship. A.C. is an Adjunct Professor of Tata Institute of Fundamental Research (Mumbai), RMIT university (Melbourne, Australia), Indian Institute of Technology (Kanpur), and Indian Institute of Science Education and Research (Mohali). A.C. gratefully acknowledges J.C. Bose Fellowship (Dept. of Science and Technology, Govt. of India). Some of the work described in this article was carried out by former members of A.C.’s research group whose contributions are gratefully acknowledged. We thank Sreetama Pal for help in making figures, and members of the Chattopadhyay laboratory for critically reading the manuscript.


  1. 1.
    Cooper EC, Jan LY (1999) Ion channel genes and human neurological disease: recent progress, prospects, and challenges. Proc Natl Acad Sci U S A 96:4759–4766CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Stutts MJ, Canessa CM, Olsen JC, Hamrick M, Cohn JA, Rossier BC, Boucher RC (1995) CFTR as a cAMP-dependent regulator of sodium channels. Science 269:847–850CrossRefPubMedGoogle Scholar
  3. 3.
    Niemeyer BA, Mery L, Zawar C, Suckow A, Monje F, Pardo LA, Stühmer W, Flockerzi V, Hoth M (2001) Ion channels in health and disease. 83rd Boehringer Ingelheim Fonds International Titisee Conference. EMBO Rep 2:568–573CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    England PJ (1999) Discovering ion-channel modulators – making the electrophysiologist’s life more interesting. Drug Discov Today 4:391–392CrossRefPubMedGoogle Scholar
  5. 5.
    Kelkar DA, Chattopadhyay A (2007) The gramicidin ion channel: a model membrane protein. Biochim Biophys Acta 1768:2011–2025CrossRefPubMedGoogle Scholar
  6. 6.
    Chattopadhyay A, Kelkar DA (2005) Ion channels and d-amino acids. J Biosci 30:147–149CrossRefPubMedGoogle Scholar
  7. 7.
    Rawat SS, Kelkar DA, Chattopadhyay A (2004) Monitoring gramicidin conformations in membranes: a fluorescence approach. Biophys J 87:831–843CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    O’Connell AM, Koeppe RE II, Andersen OS (1990) Kinetics of gramicidin channel formation in lipid bilayers: transmembrane monomer association. Science 250:1256–1259CrossRefPubMedGoogle Scholar
  9. 9.
    Ketchem RR, Hu W, Cross TA (1993) High-resolution conformation of gramicidin A in a lipid bilayer by solid-state NMR. Science 261:1457–1460CrossRefPubMedGoogle Scholar
  10. 10.
    Mukherjee S, Chattopadhyay A (1994) Motionally restricted tryptophan environments at the peptide-lipid interface of gramicidin channels. Biochemistry 33:5089–5097CrossRefPubMedGoogle Scholar
  11. 11.
    Kelkar DA, Chattopadhyay A (2006) Membrane interfacial localization of aromatic amino acids and membrane protein function. J Biosci 31:297–302CrossRefPubMedGoogle Scholar
  12. 12.
    Sychev SV, Barsukov LI, Ivanov VT (1993) The double ππ5.6 helix of gramicidin A predominates in unsaturated lipid membranes. Eur Biophys J 22:279–288CrossRefPubMedGoogle Scholar
  13. 13.
    Zein M, Winter R (2000) Effect of temperature, pressure and lipid acyl chain length on the structure and phase behaviour of phospholipid-gramicidin bilayers. Phys Chem Chem Phys 2:4545–4551CrossRefGoogle Scholar
  14. 14.
    Kelkar DA, Chattopadhyay A (2007) Modulation of gramicidin channel conformation and organization by hydrophobic mismatch in saturated phosphatidylcholine bilayers. Biochim Biophys Acta 1768:1103–1113CrossRefPubMedGoogle Scholar
  15. 15.
    Chattopadhyay A, Raghuraman H (2004) Application of fluorescence spectroscopy to membrane protein structure and dynamics. Curr Sci 87:175–180Google Scholar
  16. 16.
    Raghuraman H, Chattopadhyay A (2003) Organization and dynamics of melittin in environments of graded hydration: a fluorescence approach. Langmuir 19:10332–10341CrossRefGoogle Scholar
  17. 17.
    Raghuraman H, Kelkar DA, Chattopadhyay A (2005) Novel insights into protein structure and dynamics utilizing the red edge excitation shift approach. In: Geddes CD, Lakowicz JR (eds) Reviews in fluorescence 2005. Springer, New York, pp 199–222CrossRefGoogle Scholar
  18. 18.
    Haldar S, Chaudhuri A, Chattopadhyay A (2011) Organization and dynamics of membrane probes and proteins utilizing the red edge excitation shift. J Phys Chem B 115:5693–5706CrossRefPubMedGoogle Scholar
  19. 19.
    Chattopadhyay A, Haldar S (2014) Dynamic insight into protein structure utilizing red edge excitation shift. Acc Chem Res 47:12–19CrossRefPubMedGoogle Scholar
  20. 20.
    Chattopadhyay A (2003) Exploring membrane organization and dynamics by the wavelength-selective fluorescence approach. Chem Phys Lipids 122:3–17CrossRefPubMedGoogle Scholar
  21. 21.
    Haldar S, Kombrabail M, Krishnamoorthy G, Chattopadhyay A (2012) Depth-dependent heterogeneity in membranes by fluorescence lifetime distribution analysis. J Phys Chem Lett 3:2676–2681CrossRefPubMedGoogle Scholar
  22. 22.
    Kelkar DA, Chattopadhyay A (2005) Effect of graded hydration on the organization and dynamics of an ion channel: a fluorescence approach. Biophys J 88:1070–1080CrossRefPubMedGoogle Scholar
  23. 23.
    Rawat SS, Kelkar DA, Chattopadhyay A (2005) Effect of structural transition of the host assembly on dynamics of an ion channel peptide: a fluorescence approach. Biophys J 89:3049–3058CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Chattopadhyay A, Rawat SS, Greathouse DV, Kelkar DA, Koeppe RE II (2008) Role of tryptophan residues in gramicidin channel organization and function. Biophys J 95:166–175CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Haldar S, Chaudhuri A, Gu H, Koeppe RE II, Kombrabail M, Krishnamoorthy G, Chattopadhyay A (2012) Membrane organization and dynamics of “inner pair” and “outer pair” tryptophan residues in gramicidin channels. J Phys Chem B 116:11056–11064CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Chaudhuri A, Haldar S, Sun H, Koeppe RE II, Chattopadhyay A (2014) Importance of indole N-H hydrogen bonding in the organization and dynamics of gramicidin channels. Biochim Biophys Acta 1838:419–428CrossRefPubMedGoogle Scholar
  27. 27.
    Ghosh AK, Rukmini R, Chattopadhyay A (1997) Modulation of tryptophan environment in membrane-bound melittin by negatively charged phospholipids: implications in membrane organization and function. Biochemistry 36:14291–14305CrossRefPubMedGoogle Scholar
  28. 28.
    Raghuraman H, Chattopadhyay A (2004) Interaction of melittin with membrane cholesterol: a fluorescence approach. Biophys J 87:2419–2432CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Raja SM, Rawat SS, Chattopadhyay A, Lala AK (1999) Localization and environment of tryptophans in soluble and membrane-bound states of a pore-forming toxin from Staphylococcus aureus. Biophys J 76:1469–1479CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Haldar S, Raghuraman H, Namani T, Rajarathnam K, Chattopadhyay A (1798) Membrane interaction of the N-terminal domain of chemokine receptor CXCR1. Biochim Biophys Acta 2010:1056–1061Google Scholar
  31. 31.
    Chaudhuri A, Chattopadhyay A (1838) Lipid binding specificity of bovine α-lactalbumin: a multidimensional approach. Biochim Biophys Acta 2014:2078–2086Google Scholar
  32. 32.
    Chattopadhyay A, Mukherjee S (1999) Depth-dependent solvent relaxation in membranes: wavelength-selective fluorescence as a membrane dipstick. Langmuir 15:2142–2148CrossRefGoogle Scholar
  33. 33.
    Brochon J-C (1994) Maximum entropy method of data analysis in time-resolved spectroscopy. Methods Enzymol 240:262–311CrossRefPubMedGoogle Scholar
  34. 34.
    Swaminathan R, Periasamy N (1996) Analysis of fluorescence decay by the maximum entropy method: influence of noise and analysis parameters on the width of the distribution of lifetimes. Proc Indian Acad Sci Chem Sci 108:39–49Google Scholar
  35. 35.
    Mukherjee S, Kombrabail M, Krishnamoorthy G, Chattopadhyay A (1768) Dynamics and heterogeneity of bovine hippocampal membranes: role of cholesterol and proteins. Biochim Biophys Acta 2007:2130–2144Google Scholar
  36. 36.
    Haldar S, Kombrabail M, Krishnamoorthy G, Chattopadhyay A (2010) Monitoring membrane protein conformational heterogeneity by fluorescence lifetime distribution analysis using the maximum entropy method. J Fluoresc 20:407–413CrossRefPubMedGoogle Scholar
  37. 37.
    Fonseca V, Daumas P, Ranjalahy-Rasoloarijao L, Heitz F, Lazaro R, Trudelle Y, Andersen OS (1992) Gramicidin channels that have no tryptophan residues. Biochemistry 31:5340–5350CrossRefPubMedGoogle Scholar
  38. 38.
    Daumas P, Heitz F, Ranjalahy-Rasoloarijao L, Lazaro R (1989) Gramicidin A analogs: influence of the substitution of the tryptophans by naphthylalanines. Biochimie 71:77–81CrossRefPubMedGoogle Scholar
  39. 39.
    Becker MD, Greathouse DV, Koeppe RE II, Andersen OS (1991) Amino acid sequence modulation of gramicidin channel function: effects of tryptophan-to-phenylalanine substitutions on the single-channel conductance and duration. Biochemistry 30:8830–8839CrossRefPubMedGoogle Scholar
  40. 40.
    Andersen OS, Greathouse DV, Providence LL, Becker MD, Koeppe RE II (1998) Importance of tryptophan dipoles for protein function: 5-fluorination of tryptophans in gramicidin A channels. J Am Chem Soc 120:5142–5146CrossRefGoogle Scholar
  41. 41.
    Barth C, Stark G (1991) Radiation inactivation of Ion channels formed by gramicidin a. Protection by lipid double bonds and by α-tocopherol. Biochim Biophys Acta 1066:54–58CrossRefPubMedGoogle Scholar
  42. 42.
    Sobko AA, Vigasina MA, Rokitskaya TI, Kotova EA, Zakharov SD, Cramer WA, Antonenko YN (2004) Chemical and photochemical modification of colicin E1 and gramicidin A in bilayer lipid membranes. J Membr Biol 199:51–62CrossRefPubMedGoogle Scholar
  43. 43.
    Salom D, Pérez-Payá E, Pascal J, Abad C (1998) Environment- and sequence-dependent modulation of the double-stranded to single-stranded conformational transition of gramicidin A in membranes. Biochemistry 37:14279–14291CrossRefPubMedGoogle Scholar
  44. 44.
    Chattopadhyay A, London E (1987) Parallax method for direct measurement of membrane penetration depth utilizing fluorescence quenching by spin-labeled phospholipids. Biochemistry 26:39–45CrossRefPubMedGoogle Scholar
  45. 45.
    Gu H, Lum K, Kim JH, Greathouse DV, Andersen OS, Koeppe RE II (2011) The membrane interface dictates different anchor roles for “inner pair” and “outer pair” tryptophan indole rings in gramicidin A channels. Biochemistry 50:4855–4866CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Sun H, Greathouse DV, Andersen OS, Koeppe RE II (2008) The preference of tryptophan for membrane interfaces: insights from N-methylation of tryptophans in gramicidin channels. J Biol Chem 283:22233–22243CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Cohen BE, McAnaney TB, Park ES, Jan YN, Boxer SG, Jan LY (2002) Probing protein electrostatics with a synthetic fluorescent amino acid. Science 296:1700–1703CrossRefPubMedGoogle Scholar
  48. 48.
    Pless SA, Kim RY, Ahern CA, Kurata HT (2015) Atom-by-atom engineering of voltage-gated ion channels: magnified insights into function and pharmacology. J Physiol. 593:2627–2634CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Chattopadhyay A (2014) GPCRs: lipid-dependent membrane receptors that act as drug targets. Adv Biol 2014:143023Google Scholar
  50. 50.
    Nygaard R, Zou Y, Dror RO, Mildorf TJ, Arlow DH, Manglik A, Pan AC, Liu CW, Fung JJ, Bokoch MP, Thian FS, Kobilka TS, Shaw DE, Mueller L, Prosser RS, Kobilka BK (2013) The dynamic process of β2-adrenergic receptor activation. Cell 152:532–542CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.CSIR-Centre for Cellular and Molecular BiologyHyderabadIndia

Personalised recommendations