Dual Fluorescence Phenomenon in ‘Push-Pull’ Stilbenes

  • Dina Pines
  • Ehud Pines
  • Terry W. J. Steele
  • Vladislav Papper
Part of the Reviews in Fluorescence book series (RFLU, volume 8)


A short review of past and present experimental and theoretical work on the phenomenon of dual fluorescence in strong donor-acceptor (push-pull) stilbenes is presented. Various time resolved techniques such as femtosecond transient absorption, Kerr ellipsometry, fluorescence up conversion and time resolved single photon counting (TRSPC) has been utilized to confirm the presence of dual fluorescence. As the transition rate between the two emitting states is ultrafast one may be able to observe it only with the appropriate time resolution and experimental technique. The association of conformational change or twisting of the electronically excited push-pull stilbenes with dual fluorescence was supported by the dependence of the formation rate of the new emitting state on the solvent viscosity and on hydrodynamic factors of the molecules. The intramolecular charge transfer (ICT) transition may occur by changing the molecular configuration around a single bond and it competes with the trans-cis isomerisation around the double bond of the stilbene molecule. We discuss how to discern the two reactions as well as how to discern an ICT transition from a solvent dependent fluorescence Stokes shift as all the three processes may happen on a similar time scale. The dual fluorescence of the newly synthesized trans-4-dimethylamino-4′-carbomethoxystilbene serves for demonstrating an ICT transition and how it depends on the stilbene structure, the donor and acceptor properties and solvent polarity.


Stilbene Dual fluorescence Push-pull stilbene Intramolecular charge transfer TICT Trans-cis photoisomerisation Fluorescence probe 


  1. 1.
    Papper V, Pines D, Likhtenshtein GI, Pines E (1997) Photophysical characterization of trans-4,4’-disubstituted stilbenes. J Photochem Photobiol A Chem 111:87–96CrossRefGoogle Scholar
  2. 2.
    Papper V, Likhtenshtein GI (2001) Substituted stilbenes: a new sight on well-known systems. New applications in chemistry and biophysics. J Photochem Photobiol A Chem 140:39–52CrossRefGoogle Scholar
  3. 3.
    Lapouyade R, Czeschka K, Majenz W, Rettig W, Gilabert E, Rulliere C (1992) Photophysics of donor-acceptor substituted stilbenes. J Phys Chem 96:9643–9650CrossRefGoogle Scholar
  4. 4.
    Lapouyade R, Kuhn A, Letard J-F, Rettig W (1993) Multiple relaxation pathways in photoexcited dimethylaminonitro- and dimethylaminocyano-stilbenes. Chem Phys Lett 208:48–64CrossRefGoogle Scholar
  5. 5.
    Bonacic’-Koutecky’ V, Bruckmann P, Hiberty P, Koutecky’ J, Leforestier C, Salem L (1975) Sudden polarization in the zwitterionic Z excited states of organic intermediates. Photochemical implications. Angew Chem Int Ed Engl 14:575–587CrossRefGoogle Scholar
  6. 6.
    Rettig W, Majenz W (1989) Competing adiabatic photoreaction channels in stilbene derivatives. Chem Phys Lett 154(4):335–341CrossRefGoogle Scholar
  7. 7.
    Gilabert E, Lapouyade R, Rulliere C (1988) Dual fluorescence in 4-dimethylamino-4’-cyanostilbene revealed by picosecond time-resolved spectroscopy. Chem Phys Lett 145:262–267CrossRefGoogle Scholar
  8. 8.
    Le Breton H, Bennetau B, Letard J-F, Lapouyade R, Rettig W (1996) Non-radiative twisted intramolecular charge transfer state in polar stilbenes. J Photochem Photobiol A Chem 95:7–20CrossRefGoogle Scholar
  9. 9.
    Rechthaler K, Köhler G (1996) Photophysical properties of a highly fluorescent push-pull stilbenes. Chem Phys Lett 250:152–158CrossRefGoogle Scholar
  10. 10.
    Abraham E, Oberle J, Jonusauskas G, Lapouyade R, Rulliere C (1997a) Photophysics of 4-dimethylamino-4’-cyanostilbene and model compounds: dual excited states revealed by sub-picosecond transient absorption and Kerr Ellipsometry. Chem Phys 214:409–423CrossRefGoogle Scholar
  11. 11.
    Rettig W, Majenz W, Lapouyade R, Haucke G (1992) Multidimensional photochemistry in flexible dye systems. J Photochem Photobiol A Chem 62:415–427Google Scholar
  12. 12.
    Il’ichev YV, Kühnle W, Zachariasse KA (1996) Photophysics of 4-dimethylamino-4’-cyanostilbene and 4-azetidinyl-4’-cyanostilbene. Chem Phys 211:441–453CrossRefGoogle Scholar
  13. 13.
    Il’ichev YV, Zachariasse KA (1997) Intramolecular charge transfer, isomerization and rotational reorientation of trans-4-dimethylamino-4’-cyanostilbene in liquid solution. Ber Bunsenges Phys Chem 101:625–635Google Scholar
  14. 14.
    Eilers-König N, Kühne T, Schwarzer D, Vöhringer P, Schroeder J (1996) Femtosecond dynamics of intramolecular charge transfer in 4-dimethylamino-4’-cyanostilbene in polar solvents. Chem Phys Lett 253:69–76Google Scholar
  15. 15.
    Rettig W, Majenz W, Herter R, Le’tard JF, Lapouyade R (1993) Photophysics of stilbenoid dye systems. A comparison of experiment and theory. Pure Appl Chem 65:1699–1704CrossRefGoogle Scholar
  16. 16.
    Letard J-F, Lapouyade R, Rettig W (1994) Multidimensional photochemistry in 4-(N, N-dimethylamino) stilbene. Chem Phys 186:119–131CrossRefGoogle Scholar
  17. 17.
    Le’tard JF, Lapouyade R, Rettig W (1993) Structure-photophysics correlations in a series of 4-(dialkylamino) stilbenes: intramolecular charge transfer in the excited state as related to the twist around the single bonds. J Am Chem Soc 115:2441–2447CrossRefGoogle Scholar
  18. 18.
    Pines D, Pines E, Rettig W (2003) Dual fluorescence and excited state structural relaxations in donor-acceptor-stilbenes. J Phys Chem A 107:236–242CrossRefGoogle Scholar
  19. 19.
    Lippert E, Lüder W, Boos H (1962) Fluoreszenzspektrum und franck-condon-prinzip in lösungen aromatischer verbindungen. In: Mangini A (ed) Advances in molecular spectroscopy. Pergamon, Oxford, pp 443–457CrossRefGoogle Scholar
  20. 20.
    Grabowski ZR, Rotkiewicz K, Siemiarczuk A, Cowley DJ, Baumann W, Nou V (1979) Twisted intramolecular charge transfer states (TICT). A new class of excited states with a full charge separation. J Chim 3:443Google Scholar
  21. 21.
    Grabowski ZR, Dobkowski J (1983) Twisted intramolecular charge transfer (TICT) excited states: energy and molecular structure. Pure Appl Chem 55:245CrossRefGoogle Scholar
  22. 22.
    Rettig W (1986) Charge separation in excited states of decoupled systems – TICT compounds and implications regarding the development of new laser dyes and the primary process of vision and photosynthesis. Angew Chem Int Ed Engl 25:971–988CrossRefGoogle Scholar
  23. 23.
    Rettig W (1994) Photoinduced charge separation via twisted intramolecular charge transfer states. In: Mattay J (ed) Topics in current chemistry, electron-transfer I, vol 169. Springer, Berlin, pp 253–299Google Scholar
  24. 24.
    Gilabert E, Lapouyade R, Rulliere C (1991) Time-resolved dual fluorescence of push—pull stilbenes at high solute concentration and excitation intensity: evidence for an emitting bicimer. Chem Phys Lett 185:82–87CrossRefGoogle Scholar
  25. 25.
    Abraham E, Oberle J, Jonusauskas G, Lapouyade R, Rulliere C (1997b) Dual excited states in 4-dimethylamino 4-cyanostilbene (DCS) revealed by sub-picosecond transient absorption and Kerr ellipsometry. J Photochem Photobiol A 105:101–107CrossRefGoogle Scholar
  26. 26.
    Rafiq S, Sen P (2013) Dielectric controlled excited state relaxation pathways of a representative push-pull stilbene: a mechanistic study using femtosecond fluorescence up-conversion technique. J Chem Phys 138:084308CrossRefPubMedGoogle Scholar
  27. 27.
    Amatatsu Y (2001) Ab initio study on the photochemical behavior of 4-dimethylamino, 4-cyanostilbene. Chem Phys 274:87–98CrossRefGoogle Scholar
  28. 28.
    Amatatsu Y (2000) Ab initio configuration interaction study on electronically excited 4-dimethylamino-4-cyanostilbene. Theor Chem Accounts 103:445–450CrossRefGoogle Scholar
  29. 29.
    Lin CK, Wang YF, Cheng YC, Yang JSJ (2013) Multisite constrained model of trans-4-(N, N-Dimethylamino)-4′-nitrostilbene for structural elucidation of radiative and nonradiative excited states. Phys Chem A 117:3158–3164CrossRefGoogle Scholar
  30. 30.
    Singh C, Ghosh R, Mondal JA, Palit DK (2013) Excited state dynamics of a push–pull stilbene: a femtosecond transient absorption spectroscopic study. J Photochem Photobiol A 263:50–60CrossRefGoogle Scholar
  31. 31.
    Yang J-S, Liau K-L, Hwang C-Y, Wang C-M (2006) Photoinduced single- versus double-bond torsion in donor−acceptor−substituted trans-stilbenes. J Phys Chem A 110:8003–8010CrossRefPubMedGoogle Scholar
  32. 32.
    Zachariasse KA (2000) Comment on “Pseudo-Jahn–Teller and TICT-models: a photophysical comparison of meta-and para-DMABN derivatives” [Chem. Phys. Lett. 305 (1999) 8]: The PICT model for dual fluorescence of aminobenzonitriles. Chem Phys Lett 305320:8–13CrossRefGoogle Scholar
  33. 33.
    Schroeder J, Schwarzer D, Troe J, Voss F (1990) Cluster and barrier effects in the temperature and pressure dependence of the photoisomerization of trans-stilbene. J Phys Chem 93(4):2393–2404Google Scholar
  34. 34.
    Meier H (1992) The photochemistry of stilbenoid compounds and their role in materials technology. Angew Chem Int Ed Engl 31:1399–1420CrossRefGoogle Scholar
  35. 35.
    Kovalenko SA, Schanz R, Senyushkina TA, Ernsting NP (2002) Femtosecond spectroscopy of p-dimethylaminocyanostilbene in solution – no evidence for dual fluorescence. Phys Chem Chem Phys 4:703–707CrossRefGoogle Scholar
  36. 36.
    Ernsting NP, Breffke J, Yu D, Vorobyev DA, Duncan IP (2008) Sub-picosecond fluorescence evolution of amino-cyano-stilbenes in methanol: polar solvation obeys continuum theory without evidence of twisting. Phys Chem Chem Phys 10:2043–2049CrossRefPubMedGoogle Scholar
  37. 37.
    Quick M, Berndt F, Dobryakov AL, Ioffe IN, Granovsky AA, Knie C, Mahrwald R, Lenoir D, Ernsting NP, Kovalenko SA (2014) Photoisomerization dynamics of stiff-stilbene in solution. J Phys Chem B 118:1389–1402CrossRefPubMedGoogle Scholar
  38. 38.
    Papper V, Pokholenko O, Wu Y, Zhou Y, Jianfeng P, Steele TWJ, Marks RS (2014) Novel Photochrome Aptamer Switch Assay (PHASA) for adaptive binding to aptamers. J Fluoresc 24(6):1581–1591. doi: 10.1007/s10895-014-1441-9 CrossRefPubMedGoogle Scholar
  39. 39.
    Wu Y, Papper V, Pokholenko O, Kharlanov V, Zhou Y, Steele TWJ, Marks RS (2015) New photochrome probe allows simultaneous pH and microviscosity sensing. J Fluoresc 25(34):961–972. doi: 10.1007/s10895-015-1577-2 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Dina Pines
    • 1
  • Ehud Pines
    • 1
  • Terry W. J. Steele
    • 2
  • Vladislav Papper
    • 2
  1. 1.Department of ChemistryBen-Gurion University of the NegevBeer-ShevaIsrael
  2. 2.School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations