An Evolutionary Algorithm to Generate Real Urban Traffic Flows

  • Daniel H. StolfiEmail author
  • Enrique Alba
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9422)


In this article we present a strategy based on an evolutionary algorithm to calculate the real vehicle flows in cities according to data from sensors placed in the streets. We have worked with a map imported from OpenStreetMap into the SUMO traffic simulator so that the resulting scenarios can be used to perform different optimizations with the confidence of being able to work with a traffic distribution close to reality. We have compared the results of our algorithm to other competitors and achieved results that replicate the real traffic distribution with a precision higher than 90 %.


Evolutionary algorithm Traffic simulation SUMO Smart mobility Smart city 



This research has been partially funded by project number 8.06/5.47.4142 in collaboration with the VSB-Technical University of Ostrava and Universidad de Málaga UMA/FEDER FC14-TIC36, programa de fortalecimiento de las capacidades de I+D+i en las universidades 2014–2015, de la Consejería de Economía, Innovación, Ciencia y Empleo, cofinanciado por el fondo europeo de desarrollo regional (FEDER). Also, partially funded by the Spanish MINECO project TIN2014-57341-R ( The authors would like to thank the FEDER of European Union for financial support via project “Movilidad Inteligente: Wi-Fi, Rutas y Contaminación” (maxCT) of the “Programa Operativo FEDER de Andalucía 2014-2020”. We also thank all Agency of Public Works of Andalusia Regional Government staff and researchers for their dedication and professionalism. Daniel H. Stolfi is supported by a FPU grant (FPU13/00954) from the Spanish Ministry of Education, Culture and Sports. University of Malaga. International Campus of Excellence Andalucia TECH.


  1. 1.
    Angius, F., Reineri, M., Chiasserini, C., Gerla, M., Pau, G.: Towards a realistic optimization of urban traffic flows. In: 2012 15th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 1661–1668, Sep 2012Google Scholar
  2. 2.
    Bera, S., Rao, K.V.K.: Estimation of origin-destination matrix from traffic counts: The state of the art. European Transport - Trasporti Europei 49(49), 3–23 (2011)Google Scholar
  3. 3.
    Hazelton, M.L.: Statistical inference for time varying origin-destination matrices. Transp. Res. Part B: Methodological 42(6), 542–552 (2008)CrossRefGoogle Scholar
  4. 4.
    Krajzewicz, D., Erdmann, J., Behrisch, M., Bieker, L.: Recent development and applications of SUMO - Simulation of Urban MObility. Int. J. Adv. Syst. Meas. 5(3), 128–138 (2012)Google Scholar
  5. 5.
    Krajzewicz, D., Wagner, P.: Large-scale vehicle routing scenarios based on pollulant emissions. In: Meyer, G., Valldorf, J. (eds.) Advanced Microsystems for Automotive Applications, pp. 237–246. Springer, Heidelberg (2011)Google Scholar
  6. 6.
    Kwatirayo, S., Almhana, J., Liu, Z.: Adaptive traffic light control using VANET: A case study. In: 2013 9th International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 752–757, Jul 2013Google Scholar
  7. 7.
    Li, B.: Bayesian inference for origin-destination matrices of transport networks using the EM algorithm. Technometrics 47(4), 399–408 (2005)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Lo, H.P., Chan, C.P.: Simultaneous estimation of an origin-destination matrix and link choice proportions using traffic counts. Transp. Res. Part A: Policy Pract. 37(9), 771–788 (2003)Google Scholar
  9. 9.
    Mckenney, D., White, T.: Distributed and adaptive traffic signal control within a realistic traffic simulation. Eng. Appl. Artif. Intell. 26(1), 574–583 (2013)CrossRefGoogle Scholar
  10. 10.
    Nie, Y.M., Zhang, H.M.: A variational inequality formulation for inferring dynamic origin-destination travel demands. Transp. Res. Part B: Methodological 42(7), 635–662 (2008)CrossRefGoogle Scholar
  11. 11.
    Papaleondiou, L.G., Dikaiakos, M.D.: TrafficModeler: a graphical tool for programming microscopic traffic simulators through high-level abstractions. In: IEEE 69th Vehicular Technology Conference, VTC Spring 2009, pp. 1–5, Apr 2009Google Scholar
  12. 12.
    Sánchez-Medina, J., Galán-Moreno, M., Rubio-Royo, E.: Traffic signal optimization in saragossa under congestion conditions, using genetic algorithms, traffic microsimulation, and cluster computing. IEEE Trans. Intell. Transp. Syst. 11(1), 132–141 (2010)CrossRefGoogle Scholar
  13. 13.
    Stolfi, D.H., Alba, E.: Red Swarm: Reducing travel times in smart cities by using bio-inspired algorithms. Appl. Soft Comput. 24, 181–195 (2014)CrossRefGoogle Scholar
  14. 14.
    Stolfi, D.H., Alba, E.: Smart mobility policies with evolutionary algorithms: the adapting info panel case. In: Proceedings of the 2015 Conference on Genetic and Evolutionary Computation Conference, GECCO 2015, Madrid (2015, in Press)Google Scholar
  15. 15.
    Gong, Z.: Estimating the urban OD matrix: A neural network approach. Eur. J. Oper. Res. 106(1), 108–115 (1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.LCCUniversity of MalagaMálagaSpain

Personalised recommendations