Beyond Unfeasibility: Strategic Oscillation for the Maximum Leaf Spanning Tree Problem

  • Jesús Sánchez-OroEmail author
  • Abraham Duarte
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9422)


Given an undirected and connected graph, the maximum leaf spanning tree problem consists in finding a spanning tree with as many leaves as possible. This \(\mathcal {NP}\)-hard problem has practical applications in telecommunication networks, circuit layouts, and other graph-theoretic problems. An interesting application appears in the context of broadcasting in telecommunication networks, where it is interesting to reduce the number of broadcasting computers in the network. These components are relatively expensive and therefore its is desirable to deploy as few of them as possible in the network. This optimization problem is equivalent to maximize the number of non-broadcasting computers. We present a strategic oscillation approach for solving the maximum leaf spanning tree problem. The results obtained by the proposed algorithm are compared with the best previous algorithm found in the literature, showing the superiority of our proposal.


Telecommunication networks Broadcasting Spanning tree Strategic oscillation 



This research was partially supported by the Ministerio de Economía y Competitividad of Spain (Project Number TIN2012-35632-C02) and the Comunidad de Madrid (Project Number S2013/ICE-2894).


  1. 1.
    Butenko, S., Cheng, X., Du, D., Pardalos, P.M.: On the constructionof virtualbackbone for ad hoc wireless network. In: Butenko, S., Murphey, R., Pardalos, P.M. (eds.) Cooperative Control: Models,Applications and Algorithms, Cooperative Systems, vol. 1, pp. 43–54. Springer, US (2003) CrossRefGoogle Scholar
  2. 2.
    Chen, S., Ljubić, I., Raghavan, S.: The regenerator location problem. Networks 55(3), 205–220 (2010)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Duarte, A., Laguna, M., Martí, R., Sánchez-Oro, J.: Optimization procedures for the bipartite unconstrained 0–1 quadratic programming problem. Comput. Operat. Res. 51, 123–129 (2014)CrossRefGoogle Scholar
  4. 4.
    Duarte, A., Martí, R., Resende, M., Silva, R.: Improved heuristics for the regenerator location problem. Int. Trans. Oper. Res. 21(4), 541–558 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Duarte, A., Sánchez-Oro, J., Resende, M., Glover, F., Mart, R.: Greedy randomized adaptive search procedure with exterior path relinking for differential dispersion minimization. Inf. Sci. 296, 46–60 (2015)CrossRefGoogle Scholar
  6. 6.
    Feo, T.A., Resende, M., Smith, S.H.: A greedy randomized adaptive search procedure for maximum independent set. Oper. Res. 42(5), 860–878 (1994)zbMATHCrossRefGoogle Scholar
  7. 7.
    Fernandes, L.M., Gouveia, L.: Minimal spanning trees with a constraint on the number of leaves. Eur. J. Oper. Res. 104(1), 250–261 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Fernau, H., Kneis, J., Kratsch, D., Langer, A., Liedloff, M., Raible, D., Rossmanith, P.: An exact algorithm for the maximum leaf spanning tree problem. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 161–172. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  9. 9.
    Fujie, T.: The maximum-leaf spanning tree problem: Formulations and facets. Networks 43(4), 212–223 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Fujie, T.: An exact algorithm for the maximum leaf spanning tree problem. Comput. Oper. Res. 30(13), 1931–1944 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Gallego, M., Laguna, M., Martí, R., Duarte, A.: Tabu search with strategic oscillation for the maximally diverse grouping problem. J. Oper. Res. Soc. 64(5), 724–734 (2013)CrossRefGoogle Scholar
  12. 12.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Co., New York (1979)zbMATHGoogle Scholar
  13. 13.
    Glover, F.: Heuristics for integer programming using surrogate constraints. Decis. Sci. 8(1), 156–166 (1977)CrossRefGoogle Scholar
  14. 14.
    Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Norwell (1997)zbMATHCrossRefGoogle Scholar
  15. 15.
    Glover, F., Laguna, M.: Tabu search. In: Du, D.-Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, pp. 2093–2229. Springer, US (1999)Google Scholar
  16. 16.
    Guha, S., Khuller, S.: Approximation algorithms for connected dominating sets. Algorithmica 20(4), 374–387 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Hansen, P., Mladenović, N., Moreno, J.A.: Variable neighbourhood search: methods and applications. Ann. Oper. Res. 175(1), 367–407 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Laguna, M., Marti, R.: Scatter Search: Methodology and Implementations in C. Kluwer Academic Publishers, Norwell (2002) Google Scholar
  19. 19.
    Lu, H., Ravi, R.: Approximating maximum leaf spanning trees in almost linear time. J. Algorithms 29(1), 132–141 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Sánchez-Oro, J., Laguna, M., Duarte, A., Martí, R.: Scatter search for the profile minimization problem. Networks 65(1), 10–21 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Sánchez-Oro, J., Pantrigo, J.J.: Duarte: Combining intensification and diversification strategies in vns. an application to the vertex separation problem. Comput. Oper. Res. 52(Pt. B(0)), 209–219 (2014)CrossRefGoogle Scholar
  22. 22.
    Solis-Oba, R.: 2-approximation algorithm for finding a spanning tree with maximum number of leaves. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 441–452. Springer, Heidelberg (1998) Google Scholar
  23. 23.
    Storer, J.: Constructing full spanning trees for cubic graphs. Inf. Process. Lett. 13(1), 8–11 (1981)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Universidad Rey Juan CarlosMadridSpain

Personalised recommendations