Advertisement

Measuring Quality in Metadata Repositories

  • Dimitris Gavrilis
  • Dimitra-Nefeli Makri
  • Leonidas Papachristopoulos
  • Stavros Angelis
  • Konstantinos Kravvaritis
  • Christos Papatheodorou
  • Panos Constantopoulos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9316)

Abstract

The need for good quality metadata records becomes a necessity given the large quantities of digital content that is available through digital repositories and the increasing number of web services that use this content. The context in which metadata are generated and used affects the problem in question and therefore a flexible metadata quality evaluation model that can be easily and widely used has yet to be presented. This paper proposes a robust multidimensional metadata quality evaluation model that measures metadata quality based on five metrics and by taking into account contextual parameters concerning metadata generation and use. An implementation of this metadata quality evaluation model is presented and tested against a large number of real metadata records from the humanities domain and for different applications.

Keywords

Information quality models Metadata quality Context-sensitive evaluation Repositories Research infrastructures 

Notes

Acknowledgment

This work has been funded by Greece and the European Regional Development Fund of the European Union under the O.P. Competitiveness and Entrepreneurship, NSRF 2007-2013 and the Regional Operational Program of ATTIKI in the frame of MEDA project, GSRT KRIPIS action.

References

  1. 1.
    Herzog, T., Scheuren, F., Winkler, W.: Data Quality and Record Linkage Techniques. Springer-Verlag, New York (2007)zbMATHGoogle Scholar
  2. 2.
    Tani, A., Candela, L., Castelli, D.: Dealing with metadata quality: the legacy of digital library efforts. Inf. Process. Manag. 49, 1194–1205 (2013)CrossRefGoogle Scholar
  3. 3.
    Moen, W.E., Stewart, E.L., McClure, C.R.: The Role of Content Analysis in Evaluating Metadata for the U.S. Government Information Locator Service (GILS): Results from an Exploratory Study (1997). http://digital.library.unt.edu/ark:/67531/metadc36312/citation/
  4. 4.
    Margaritopoulos, T., Margaritopoulos, M., Mavridis, I., Manitsaris, A.: A conceptual framework for metadata quality assessment. In: International Conference on Dublin Core and Metadata Applications, Dublin Core Metadata Initiative, Singapore, pp. 104–113 (2008)Google Scholar
  5. 5.
    Margaritopoulos, M., Margaritopoulos, T., Mavridis, I., Manitsaris, A.: Quantifying and measuring metadata completeness. J. Am. Soc. Inf. Sci. Tech. 63, 724–737 (2012)CrossRefGoogle Scholar
  6. 6.
    Bellini, E., Nesi, P.: Metadata quality assessment tool for open access cultural heritage institutional repositories. In: Nesi, P., Santucci, R. (eds.) ECLAP 2013. LNCS, vol. 7990, pp. 90–103. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  7. 7.
    Bruce, T.R., Hillmann, D.I.: The continuum of metadata quality: defining, expressing, exploiting. In: Hillman, D., Westbrooks, E. (eds.) Metadata in practice. ALA Editions, Chicago (2004)Google Scholar
  8. 8.
    Ochoa, X., Duval, E.: Quality metrics for learning object metadata. In: World Conference on Educational Multimedia, Hypermedia and Telecommunications, pp. 1004–1011 (2006)Google Scholar
  9. 9.
    Stvilia, B., Gasser, L., Twidale, M.B., Smith, L.C.: A framework for information quality assessment. J. Am. Soc. Inf. Sci. Tech. 58, 1720–1733 (2007)CrossRefGoogle Scholar
  10. 10.
    Shreeves, S.L., Knutson, E.M., Stvilia, B., Palmer, C.L., Twidale, M.B., Cole, T.W.: Is “quality” metadata “shareable” metadata? the implications of local metadata practices for federated collections. In: 12th National Conference of the Association of College and Research Libraries (ACRL), Minneapolis, pp. 223–237 (2005)Google Scholar
  11. 11.
    Chen, Y.-N., Wen, C.-Y., Chen, H.-P., Lin, Y.-H., Sum, H.-C.: Metrics for metadata quality assurance and their implications for digital libraries. In: Airong, J. (ed.) ICADL 2011. LNCS, vol. 7008, pp. 138–147. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  12. 12.
    Lei, Y., Uren, V., Motta, E.: A framework for evaluating semantic metadata. In: 4th International Conference on Knowledge Capture, p. 135. ACM Press, New York (2007)Google Scholar
  13. 13.
    Papatheodorou, C., Dallas, C., Ertmann-Christiansen, C., Fernie, K., Gavrilis, D., Masci, M.E., Constantopoulos, P., Angelis, S.: A new architecture and approach to asset representation for europeana aggregation: the CARARE way. In: García-Barriocanal, E., Cebeci, Z., Okur, M.C., Öztürk, A. (eds.) MTSR 2011. CCIS, vol. 240, pp. 412–423. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  14. 14.
    Gavrilis, D., Dallas, C., Angelis, S.: A curation-oriented thematic aggregator. In: Aalberg, T., Papatheodorou, C., Dobreva, M., Tsakonas, G., Farrugia, C.J. (eds.) TPDL 2013. LNCS, vol. 8092, pp. 132–137. Springer, Heidelberg (2013) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Dimitris Gavrilis
    • 1
  • Dimitra-Nefeli Makri
    • 1
  • Leonidas Papachristopoulos
    • 1
  • Stavros Angelis
    • 1
  • Konstantinos Kravvaritis
    • 1
  • Christos Papatheodorou
    • 1
    • 2
  • Panos Constantopoulos
    • 1
    • 3
  1. 1.Digital Curation Unit‘Athena’ Research Centre, Institute for the Management of Information SystemsAthensGreece
  2. 2.Department of Archives, Library Science and MuseologyIonian UniversityCorfuGreece
  3. 3.Department of InformaticsAthens University of Economics and BusinessAthensGreece

Personalised recommendations