Space Division Multiplexing in Multimode Fiber for Channel Diversity in Data Communications

  • Angela Amphawan
  • Yousef Fazea
  • Mohamed Elshaikh
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 362)


Space division multiplexing (SDM) has recently gained eminence as a means to alleviate data traffic congestion to future-proof current network infrastructure. This paper reports on SDM of a new spiral-phased wavefront comprising modified Laguerre-Gaussian (LG) and Hermite-Gaussian (HG) modes on a wavelength of 1550.12 nm over a 2 km-long MMF. Power coupling coefficients, degenerate mode group delays and bit-error rates are analyzed for different vortex orders.


Transverse Electric Field Multimode Fiber Radial Index Space Division Multiplex Narrow Width Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Talebi, S., et al.: Spectrum assignment in optical networks: A multiprocessor scheduling perspective. IEEE/OSA J. Opt. Commun. Network. 6(8), 754–763 (2014)CrossRefGoogle Scholar
  2. 2.
    Wang, R., Mukherjee, B.: Spectrum management in heterogeneous bandwidth optical networks. Opt. Switching Network. 11(A), 83–91 (2014)CrossRefGoogle Scholar
  3. 3.
    Cisco Visual Networking Index: Global mobile data traffic forecast update 2014–2019 white paper. Cisco, San Jose (2015)Google Scholar
  4. 4.
    Amphawan, A., Khair, M.A.M., Hasan, H.: Multimedia traffic routing in multilayer WDM networks. Network Complex Syst. 2(3), 1–9 (2012)Google Scholar
  5. 5.
    Nisar, K., Amphawan, A., Hassan, S.B.: Comprehensive structure of novel voice priority queue scheduling system model for VoIP over WLANs. Int. J. Adv. Pervasive Ubiquitous Comput. (IJAPUC) 3(4), 50–70 (2011)CrossRefGoogle Scholar
  6. 6.
    van Uden, R.G.H., et al.: Ultra-high-density spatial division multiplexing with a few-mode multicore fibre. Nat. Photon. 8(11), 865–870 (2014)CrossRefGoogle Scholar
  7. 7.
    Amphawan, A.: Binary spatial amplitude modulation of continuous transverse modal electric field using a single lens for mode selectivity in multimode fiber. J. Mod. Opt. 59(5), 460–469 (2012)CrossRefGoogle Scholar
  8. 8.
    Amphawan, A., O’Brien, D.: Holographic mode field generation for a multimode fiber channel. In: IEEE International Conference on Photon (ICP2010). IEEE, Langkawi (2010)Google Scholar
  9. 9.
    Carpenter, J., Thomsen, B.C., Wilkinson, T.D.: Degenerate mode-group division multiplexing. J. Lightwave Technol. 30(3946), 3946–3952 (2012)CrossRefGoogle Scholar
  10. 10.
    Carpenter, J., Wilkinson, T.D.: All optical mode-multiplexing using holography and multimode fiber couplers. J. Lightwave Technol. 30(12), 1978–1984 (2012)CrossRefGoogle Scholar
  11. 11.
    Arik, S.O., Askarov, D., Kahn, J.M.: Adaptive frequency-domain equalization in mode-division multiplexing systems. J. Lightwave Technol. 32(10), 1841–1852 (2014)CrossRefGoogle Scholar
  12. 12.
    Arik, S.O., Kahn, J.M.: Adaptive MIMO signal processing in mode-division multiplexing. In: Photonics Society Summer Topical Meeting Series. IEEE (2014)Google Scholar
  13. 13.
    Amphawan, A.: Binary encoded computer generated holograms for temporal phase shifting. Optics Exp. 19(23), 23085–23096 (2011)CrossRefGoogle Scholar
  14. 14.
    Amphawan, A.: Backlighting for alignment of optics in first diffraction order path. In: Proceedings of SPIE International Conference on Applications of Optics and Photon (2011)Google Scholar
  15. 15.
    Amphawan, A., Nedniyom, B., Al Samman, N.M.: Selective excitation of LP01 mode in multimode fiber using solid-core photonic crystal fiber. J. Modern Optics 60(20), 1675–1683 (2013)CrossRefGoogle Scholar
  16. 16.
    Jung, Y., et al.: Dual mode fused optical fiber couplers suitable for mode division multiplexed transmission. Opt. Express 21(20), 24326–24331 (2013)CrossRefGoogle Scholar
  17. 17.
    Tsekrekos, C.P., Syvridis, D.: All-Fiber broadband LP02 mode converter for future wavelength and mode division multiplexing systems. IEEE Photon. Technol. Lett. 24(18), 1638–1641 (2012)CrossRefGoogle Scholar
  18. 18.
    Miller, D.A.B.: Reconfigurable add-drop multiplexer for spatial modes. Opt. Express 21(17), 20220–20229 (2013)CrossRefGoogle Scholar
  19. 19.
    Fang, L., Jia, H.: Mode add/drop multiplexers of LP02 and LP03 modes with two parallel combinative long-period fiber gratings. Opt. Express 22(10), 11488–11497 (2014)CrossRefGoogle Scholar
  20. 20.
    Amphawan, A., Wa’el Ali Alabdalleh, : Simulation of properties of the transverse modal electric field of an infinite parabolic multimode fiber. Microwave Optical Lett. 54(6), 1362–1365 (2012)CrossRefGoogle Scholar
  21. 21.
    Kwok, C., et al.: Novel passive launch scheme for ultimate bandwidth improvement of graded-index multimode fibers. In: Optical Fiber Communication Conference. Optical Society of America (2010)Google Scholar
  22. 22.
    Geng, L., et al.: Efficient line launch for bandwidth improvement of 10 Gbit/s multimode fibre links using elliptical Gaussian beam. ECOC, We, 6 (2010)Google Scholar
  23. 23.
    Geng, L., et al.: Symmetrical 2-D hermite-gaussian square launch for high bit rate transmission in multimode fiber links. In: Optical Fiber Communication Conference. Optical Society of America (2011)Google Scholar
  24. 24.
    Li, Y., et al. 20 Gb/s mode-group-division multiplexing employing Hermite-Gaussian launches over worst-case multimode fiber links. In: Optical Fiber Communication Conference. Optical Society of America (2014)Google Scholar
  25. 25.
    Rsoft Design Group, I: OptSim user guide (2010)Google Scholar
  26. 26.
    MATLAB. Natick, Massachusetts, United States, The MathWorks, Inc. Release (2013)Google Scholar
  27. 27.
    Xue, X., Kirk, A.G.: Transverse modal characterization of VCSELs based on intensity measurement. In: Optoelectronic Interconnects VII; Photon. Packaging and Integration II. SPIE, San Jose (2000)Google Scholar
  28. 28.
    Amphawan, A., O’Brien, D.: Modal decomposition of output field from holographic mode field generation in a multimode fiber channel. In: IEEE International Conference on Photon (ICP2010). IEEE, Langkawi (2010)Google Scholar
  29. 29.
    Amphawan, A., Review of optical multiple-input-multiple-output techniques in multimode fiber. Opt Eng 50:102001 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Angela Amphawan
    • 1
    • 2
  • Yousef Fazea
    • 1
  • Mohamed Elshaikh
    • 3
  1. 1.Integrated Optics Group, School of ComputingUniversiti Utara MalaysiaSintokMalaysia
  2. 2.Research Laboratory of ElectronicsMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.School of Computer and Communication EngineeringUniversiti Malaysia PerlisArauMalaysia

Personalised recommendations