Multi-Level Parcellation of the Cerebral Cortex Using Resting-State fMRI

  • Salim Arslan
  • Daniel Rueckert
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9351)


Cortical parcellation is one of the core steps for identifying the functional architecture of the human brain. Despite the increasing number of attempts at developing parcellation algorithms using resting-state fMRI, there still remain challenges to be overcome, such as generating reproducible parcellations at both single-subject and group levels, while sub-dividing the cortex into functionally homogeneous parcels. To address these challenges, we propose a three-layer parcellation framework which deploys a different clustering strategy at each layer. Initially, the cortical vertices are clustered into a relatively large number of supervertices, which constitutes a high-level abstraction of the rs-fMRI data. These supervertices are combined into a tree of hierarchical clusters to generate individual subject parcellations, which are, in turn, used to compute a groupwise parcellation in order to represent the whole population. Using data collected as part of the Human Connectome Project from 100 healthy subjects, we show that our algorithm segregates the cortex into distinctive parcels at different resolutions with high reproducibility and functional homogeneity at both single-subject and group levels, therefore can be reliably used for network analysis.


Spectral Cluster Independent Component Analysis Cortical Surface Silhouette Width Functional Homogeneity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE T. Pattern Anal. 34(11), 2274–2282 (2012)CrossRefGoogle Scholar
  2. 2.
    Blumensath, T., Jbabdi, S., Glasser, M.F., Van Essen, D.C., Ugurbil, K., Behrens, T.E., Smith, S.M.: Spatially constrained hierarchical parcellation of the brain with resting-state fMRI. NeuroImage 76, 313–324 (2013)CrossRefGoogle Scholar
  3. 3.
    Craddock, R.C., James, G., Holtzheimer, P.E., Hu, X.P., Mayberg, H.S.: A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum. Brain Mapp. 33(8), 1914–1928 (2012)CrossRefGoogle Scholar
  4. 4.
    Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., Andersson, J.L., Xu, J., Jbabdi, S., Webster, M., Polimeni, J.R., Van Essen, D.C., Jenkinson, M.: The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage 80, 105–124 (2013)CrossRefGoogle Scholar
  5. 5.
    Power, J.D., Cohen, A.L., Nelson, S.M., Wig, G.S., Barnes, K.A., Church, J.A., Vogel, A.C., Laumann, T.O., Miezin, F.M., Schlaggar, B.L., Petersen, S.E.: Functional network organization of the human brain. Neuron 72(4), 665–678 (2011)CrossRefGoogle Scholar
  6. 6.
    de Reus, M.A., van den Heuvel, M.P.: The parcellation-based connectome: Limitations and extensions. NeuroImage 80, 397–404 (2013)CrossRefGoogle Scholar
  7. 7.
    Shen, X., Tokoglu, F., Papademetris, X., Constable, R.T.: Groupwise whole-brain parcellation from resting-state fMRI data for network node identification. NeuroImage 82, 403–415 (2013)CrossRefGoogle Scholar
  8. 8.
    Sporns, O., Tononi, G., Ktter, R.: The Human Connectome: A structural description of the human brain. PLoS Comput. Biol. 1(4), e42 (2005)Google Scholar
  9. 9.
    van den Heuvel, M., Mandl, R., Hulshoff Pol, H.: Normalized cut group clustering of resting-state fMRI data. PLoS One 3(4), e2001 (2008)Google Scholar
  10. 10.
    Yeo, B.T., Krienen, F.M., Sepulcre, J., Sabuncu, M.R., Lashkari, D., Hollinshead, M., Roffman, J.L., Smoller, J.W., Zollei, L., Polimeni, J.R., Fischl, B., Liu, H., Buckner, R.L.: The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106(3), 1125–1165 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Salim Arslan
    • 1
  • Daniel Rueckert
    • 1
  1. 1.Biomedical Image Analysis Group, Department of ComputingImperial College LondonLondonUK

Personalised recommendations