Multi-GPU Reconstruction of Dynamic Compressed Sensing MRI

  • Tran Minh Quan
  • Sohyun Han
  • Hyungjoon Cho
  • Won-Ki Jeong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9351)

Abstract

Magnetic resonance imaging (MRI) is a widely used in-vivo imaging technique that is essential to the diagnosis of disease, but its longer acquisition time hinders its wide adaptation in time-critical applications, such as emergency diagnosis. Recent advances in compressed sensing (CS) research have provided promising theoretical insights to accelerate the MRI acquisition process, but CS reconstruction also poses computational challenges that make MRI less practical. In this paper, we introduce a fast, scalable parallel CS-MRI reconstruction method that runs on graphics processing unit (GPU) cluster systems for dynamic contrast-enhanced (DCE) MRI. We propose a modified Split-Bregman iteration using a variable splitting method for CS-based DCE-MRI. We also propose a parallel GPU Split-Bregman solver that scales well across multiple GPUs to handle large data size. We demonstrate the validity of the proposed method on several synthetic and real DCE-MRI datasets and compare with existing methods.

Keywords

Graphic Processing Unit Conjugate Gradient Method Compress Sense Graphic Processing Unit Implementation Compress Sense Reconstruction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bilen, C., Wang, Y., Selesnick, I.: High-speed CS reconstruction in dynamic parallel MRI using augmented lagrangian and parallel processing. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 2(3), 370–379 (2012)CrossRefGoogle Scholar
  2. 2.
    Blaimer, M., Breuer, F., Mueller, M., Heidemann, R.M., Griswold, M.A., Jakob, P.M.: SMASH, SENSE, PILS, GRAPPA: How to choose the optimal method. Topics in Magnetic Resonance Imaging 15(4), 223–236 (2004)CrossRefGoogle Scholar
  3. 3.
    Donoho, D.: Compressed sensing. IEEE Transactions on Information Theory 52(4), 1289–1306 (2006)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Gai, J., Obeid, N., Holtrop, J.L., Wu, X.L., Lam, F., Fu, M., Haldar, J.P., Hwu, W.M.W., Liang, Z.P., Sutton, B.P.: More IMPATIENT: a gridding-accelerated toeplitz-based strategy for non-cartesian high-resolution 3D MRI on GPUs. Journal of Parallel and Distributed Computing 73(5), 686–697 (2013)CrossRefGoogle Scholar
  5. 5.
    Goldstein, T., Osher, S.: The split bregman method for ℓ1–regularized problems. SIAM Journal on Imaging Sciences 2(2), 323–343 (2009)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Hoffmann, U., Brix, G., Knopp, M.V., Hess, T., Lorenz, W.J.: Pharmacokinetic mapping of the breast: a new method for dynamic MR mammography. Magnetic Resonance in Medicine 33(4), 506–514 (1995). PMID: 7776881 Google Scholar
  7. 7.
    Jung, H., Sung, K., Nayak, K.S., Kim, E.Y., Ye, J.C.: k–t FOCUSS: a general compressed sensing framework for high resolution dynamic MRI. Magnetic Resonance in Medicine 61(1), 103–116 (2009)CrossRefGoogle Scholar
  8. 8.
    Jung, H., Ye, J.C., Kim, E.Y.: Improved k–t BLAST and k–t SENSE using FOCUSS. Physics in Medicine and Biology 52(11), 3201–3226 (2007)CrossRefGoogle Scholar
  9. 9.
    Kim, D., Trzasko, J., Smelyanskiy, M., Haider, C., Dubey, P., Manduca, A.: High–performance 3D compressive sensing MRI reconstruction using many–core architectures. Journal of Biomedical Imaging, 1–11, January 2011Google Scholar
  10. 10.
    Lustig, M., Donoho, D., Santos, J., Pauly, J.: Compressed sensing MRI. IEEE Signal Processing Magazine 25(2), 72–82 (2008)CrossRefGoogle Scholar
  11. 11.
    Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of CS for rapid MR imaging. Magnetic Resonance in Medicine 58(6), 1182–1195 (2007)CrossRefGoogle Scholar
  12. 12.
    Micikevicius, P.: 3D finite difference computation on GPUs using CUDA. In: Proceedings of 2nd Workshop on General Purpose Processing on Graphics Processing Units, GPGPU 2009, pp. 79–84. ACM, New York (2009)Google Scholar
  13. 13.
    Murphy, M., Alley, M., Demmel, J., Keutzer, K., Vasanawala, S., Lustig, M.: Fast -SPIRiT compressed sensing parallel imaging MRI: scalable parallel implementation and clinically feasible runtime. IEEE Transactions on Medical Imaging 31(6), 1250–1262 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Tran Minh Quan
    • 1
  • Sohyun Han
    • 1
  • Hyungjoon Cho
    • 1
  • Won-Ki Jeong
    • 1
  1. 1.Ulsan National Institute of Science and Technology (UNIST)UlsanSouth Korea

Personalised recommendations