Advertisement

Liver Motion Estimation via Locally Adaptive Over-Segmentation Regularization

  • Bartlomiej W. Papież
  • Jamie Franklin
  • Mattias P. Heinrich
  • Fergus V. Gleeson
  • Julia A. Schnabel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9351)

Abstract

Despite significant advances in the development of deformable registration methods, motion correction of deformable organs such as the liver remain a challenging task. This is due to not only low contrast in liver imaging, but also due to the particularly complex motion between scans primarily owing to patient breathing. In this paper, we address abdominal motion estimation using a novel regularization model that is advancing the state-of-the-art in liver registration in terms of accuracy. We propose a novel regularization of the deformation field based on spatially adaptive over-segmentation, to better model the physiological motion of the abdomen. Our quantitative analysis of abdominal Computed Tomography and dynamic contrast-enhanced Magnetic Resonance Imaging scans show a significant improvement over the state-of-the-art Demons approaches. This work also demonstrates the feasibility of segmentation-free registration between clinical scans that can inherently preserve sliding motion at the lung and liver boundary interfaces.

Keywords

Guidance Image Organ Boundary Target Registration Error Deformable Image Registration Deformable Registration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC Superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)CrossRefGoogle Scholar
  2. 2.
    Arsigny, V., Commowick, O., Pennec, X., Ayache, N.: A log-Euclidean framework for statistics on diffeomorphisms. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 924–931. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Bhushan, M., Schnabel, J.A., Risser, L., Heinrich, M.P., Brady, J.M., Jenkinson, M.: Motion correction and parameter estimation in dceMRI sequences: application to colorectal cancer. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part I. LNCS, vol. 6891, pp. 476–483. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Clifford, M.A., Banovac, F., Levy, E., Cleary, K.: Assessment of hepatic motion secondary to respiration for computer assisted interventions. Comput. Aided Surg. 7(5), 291–299 (2002)CrossRefGoogle Scholar
  5. 5.
    Hamy, V., Dikaios, N., Punwani, S., Melbourne, A., Latifoltojar, A., et al.: Respiratory motion correction in dynamic MRI using robust data decomposition registration–Application to dce-MRI. Med. Image Anal. 18(2), 301–313 (2014)CrossRefGoogle Scholar
  6. 6.
    He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1397–1409 (2013)CrossRefGoogle Scholar
  7. 7.
    Heinrich, M.P., Jenkinson, M., Papiez, B.W., Glesson, F.V., Brady, M., Schnabel, J.A.: Edge- and detail-preserving sparse image representations for deformable registration of chest MRI and CT volumes. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 463–474. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Hermosillo, G., Chefd’Hotel, C., Faugeras, O.D.: Variational methods for multimodal image matching. Int. J. Comput. Vision 50, 329–343 (2002)CrossRefzbMATHGoogle Scholar
  9. 9.
    Lorenzi, M., Ayache, N., Frisoni, G., Pennec, X.: LCC-Demons: a robust and accurate symmetric diffeomorphic registration algorithm. Neuroimage 81, 470 (2013)CrossRefGoogle Scholar
  10. 10.
    Mescam, M., Kretowski, M., Bezy-Wendling, J.: Multiscale model of liver dce-MRI towards a better understanding of tumor complexity. IEEE Trans. Med. Imag. 29(3), 699–707 (2010)CrossRefGoogle Scholar
  11. 11.
    Pace, D.F., Aylward, S.R., Niethammer, M.: A locally adaptive regularization based on anisotropic diffusion for deformable image registration of sliding organs. IEEE Trans. Med. Imag. 32(11), 2114–2126 (2013)CrossRefGoogle Scholar
  12. 12.
    Papież, B.W., Heinrich, M.P., Fehrenbach, J., Risser, L., Schnabel, J.A.: An implicit sliding-motion preserving regularisation via bilateral filtering for deformable image registration. Med. Image Anal. 18(8), 1299–1311 (2014)CrossRefGoogle Scholar
  13. 13.
    Staring, M., Klein, S., Pluim, J.P.W.: Nonrigid registration with tissue-dependent filtering of the deformation field. Phys. Med. Biol. 52, 6879–6892 (2007)CrossRefGoogle Scholar
  14. 14.
    Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic Demons: Efficient non-parametric image registration. NeuroImage 45, S61–S72 (2009)Google Scholar
  15. 15.
    Wu, Z., Rietzel, E., Boldea, V., Sarrut, D., Sharp, G.C.: Evaluation of deformable registration of patient lung 4DCT with subanatomical region segmentations. Med. Phys. 35(2), 775–781 (2008)CrossRefGoogle Scholar
  16. 16.
    Xie, Y., Chao, M., Xiong, G.: Deformable image registration of liver with consideration of lung sliding motion. Med. Phys. 38(10), 5351–5361 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Bartlomiej W. Papież
    • 1
  • Jamie Franklin
    • 2
  • Mattias P. Heinrich
    • 4
  • Fergus V. Gleeson
    • 3
  • Julia A. Schnabel
    • 1
  1. 1.Institute of Biomedical Engineering, Department of Engineering ScienceUniversity of OxfordOxfordUK
  2. 2.Department of OncologyUniversity of OxfordOxfordUK
  3. 3.Department of RadiologyChurchill Hospital, Oxford University Hospitals NHS TrustOxfordUK
  4. 4.Institute of Medical InformaticsUniversity of LübeckLübeckGermany

Personalised recommendations