A Continuous Flow-Maximisation Approach to Connectivity-Driven Cortical Parcellation

  • Sarah Parisot
  • Martin Rajchl
  • Jonathan Passerat-Palmbach
  • Daniel Rueckert
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9351)


Brain connectivity network analysis is a key step towards understanding the processes behind the brain’s development through ageing and disease. Parcellation of the cortical surface into distinct regions is an essential step in order to construct such networks. Anatomical and random parcellations are typically used for this task, but can introduce a bias and may not be aligned with the brain’s underlying organisation. To tackle this challenge, connectivity-driven parcellation methods have received increasing attention. In this paper, we propose a flexible continuous flow maximisation approach for connectivity driven parcellation that iteratively updates the parcels’ boundaries and centres based on connectivity information and smoothness constraints. We evaluate the method on 25 subjects with diffusion MRI data. Quantitative results show that the method is robust with respect to initialisation (average overlap 82%) and significantly outperforms the state of the art in terms of information loss and homogeneity.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anwander, A., Tittgemeyer, M., von Cramon, D.Y., Friederici, A.D., Knösche, T.R.: Connectivity-based parcellation of Broca’s area. Cereb. Cortex 17(4), 816–825 (2007)CrossRefGoogle Scholar
  2. 2.
    Behrens, T., Berg, H.J., Jbabdi, S., Rushworth, M., Woolrich, M.: Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? NeuroImage 34(1), 144–155 (2007)CrossRefGoogle Scholar
  3. 3.
    Blumensath, T., Jbabdi, S., Glasser, M.F., Van Essen, D.C., Ugurbil, K., Behrens, T.E., Smith, S.M.: Spatially constrained hierarchical parcellation of the brain with resting-state fMRI. NeuroImage 76, 313–324 (2013)CrossRefGoogle Scholar
  4. 4.
    Boykov, Y., Funka-Lea, G.: Graph cuts and efficient ND image segmentation. International Journal of Computer Vision 70(2), 109–131 (2006)CrossRefGoogle Scholar
  5. 5.
    Craddock, R.C., James, G.A., Holtzheimer, P.E., Hu, X.P., Mayberg, H.S.: A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum. Brain Mapp. 33, 1914–1928 (2012)CrossRefGoogle Scholar
  6. 6.
    Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., Andersson, J.L., Xu, J., Jbabdi, S., Webster, M., Polimeni, J.R., Essen, D.C.V., Jenkinson, M.: The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage 80, 105–124 (2013)CrossRefGoogle Scholar
  7. 7.
    Honnorat, N., Eavani, H., Satterthwaite, T., Gur, R., Gur, R., Davatzikos, C.: GraSP: Geodesic Graph-based Segmentation with Shape Priors for the functional parcellation of the cortex. NeuroImage 106, 207–221 (2015)CrossRefGoogle Scholar
  8. 8.
    Jbabdi, S., Woolrich, M.W., Behrens, T.E.: Multiple-subjects connectivity-based parcellation using hierarchical Dirichlet process mixture models. NeuroImage 44, 373–384 (2009)CrossRefGoogle Scholar
  9. 9.
    Jbabdi, S., Sotiropoulos, S.N., Savio, A.M., Graña, M., Behrens, T.E.J.: Model-based analysis of multishell diffusion MR data for tractography: How to get over fitting problems. Magn. Reson. Med. 68(6), 1846–1855 (2012)CrossRefGoogle Scholar
  10. 10.
    Moreno-Dominguez, D., Anwander, A., Knösche, T.R.: A hierarchical method for whole-brain connectivity-based parcellation. Hum. Brain Mapp. 35, 5000–5025 (2014)CrossRefGoogle Scholar
  11. 11.
    Parisot, S., Arslan, S., Passerat-Palmbach, J., Wells III, W.M., Rueckert, D.: Tractography-driven groupwise multi-scale parcellation of the cortex. In: IPMI (2015, in press)Google Scholar
  12. 12.
    Robinson, E.C., Jbabdi, S., Glasser, M.F., Andersson, J., Burgess, G.C., Harms, M.P., Smith, S.M., Van Essen, D.C., Jenkinson, M.: MSM: A new flexible framework for Multimodal Surface Matching. Neuroimage 100, 414–426 (2014)CrossRefGoogle Scholar
  13. 13.
    Shen, X., Tokoglu, F., Papademetris, X., Constable, R.: Groupwise whole-brain parcellation from resting-state fMRI data for network node identification. NeuroImage 82, 403–415 (2013)CrossRefGoogle Scholar
  14. 14.
    Sporns, O.: The human connectome: a complex network. Ann. NY Acad. Sci. 1224, 109–125 (2011)CrossRefGoogle Scholar
  15. 15.
    Yuan, J., Bae, E., Tai, X.C., Boykov, Y.: A continuous max-flow approach to potts model. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 379–392. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Sarah Parisot
    • 1
  • Martin Rajchl
    • 1
  • Jonathan Passerat-Palmbach
    • 1
  • Daniel Rueckert
    • 1
  1. 1.Biomedical Image Analysis Group, Department of ComputingImperial College LondonLondonUK

Personalised recommendations