International Conference on Medical Image Computing and Computer-Assisted Intervention

Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 pp 3-11 | Cite as

Deep Convolutional Encoder Networks for Multiple Sclerosis Lesion Segmentation

  • Tom Brosch
  • Youngjin Yoo
  • Lisa Y. W. Tang
  • David K. B. Li
  • Anthony Traboulsee
  • Roger Tam
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9351)

Abstract

We propose a novel segmentation approach based on deep convolutional encoder networks and apply it to the segmentation of multiple sclerosis (MS) lesions in magnetic resonance images. Our model is a neural network that has both convolutional and deconvolutional layers, and combines feature extraction and segmentation prediction in a single model. The joint training of the feature extraction and prediction layers allows the model to automatically learn features that are optimized for accuracy for any given combination of image types. In contrast to existing automatic feature learning approaches, which are typically patch-based, our model learns features from entire images, which eliminates patch selection and redundant calculations at the overlap of neighboring patches and thereby speeds up the training. Our network also uses a novel objective function that works well for segmenting underrepresented classes, such as MS lesions. We have evaluated our method on the publicly available labeled cases from the MS lesion segmentation challenge 2008 data set, showing that our method performs comparably to the state-of-theart. In addition, we have evaluated our method on the images of 500 subjects from an MS clinical trial and varied the number of training samples from 5 to 250 to show that the segmentation performance can be greatly improved by having a representative data set.

Keywords

Segmentation multiple sclerosis lesions MRI machine learning unbalanced classification deep learning convolutional neural nets 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Souplet, J.C., Lebrun, C., Ayache, N., Malandain, G.: An automatic segmentation of T2-FLAIR multiple sclerosis lesions. In: MIDAS Journal - MICCAI 2008 Workshop (2008)Google Scholar
  2. 2.
    Weiss, N., Rueckert, D., Rao, A.: Multiple sclerosis lesion segmentation using dictionary learning and sparse coding. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 735–742. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Geremia, E., Menze, B.H., Clatz, O., Konukoglu, E., Criminisi, A., Ayache, N.: Spatial decision forests for MS lesion segmentation in multi-channel MR images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part I. LNCS, vol. 6361, pp. 111–118. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Yoo, Y., Brosch, T., Traboulsee, A., Li, D.K.B., Tam, R.: Deep learning of image features from unlabeled data for multiple sclerosis lesion segmentation. In: Wu, G., Zhang, D., Zhou, L. (eds.) MLMI 2014. LNCS, vol. 8679, pp. 117–124. Springer, Heidelberg (2014)Google Scholar
  5. 5.
    Ciresan, D., Giusti, A., Schmidhuber, J.: Deep neural networks segment neuronal membranes in electron microscopy images. In: Advances in Neural Information Processing Systems, pp. 1–9 (2012)Google Scholar
  6. 6.
    LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)CrossRefGoogle Scholar
  7. 7.
    Kang, K., Wang, X.: Fully convolutional neural networks for crowd segmentation. arXiv preprint arXiv:1411.4464 (2014)Google Scholar
  8. 8.
    Zeiler, M.D., Taylor, G.W., Fergus, R.: Adaptive deconvolutional networks for mid and high level feature learning. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2018–2025. IEEE (2011)Google Scholar
  9. 9.
    Masci, J., Meier, U., Cireşan, D., Schmidhuber, J.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Honkela, T. (ed.) ICANN 2011, Part I. LNCS, vol. 6791, pp. 52–59. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Styner, M., Lee, J., Chin, B., Chin, M., Commowick, O., Tran, H., Markovic-Plese, S., Jewells, V., Warfield, S.: 3D segmentation in the clinic: A grand challenge II: MS lesion segmentation. In: MIDAS Journal - MICCAI 2008 Workshop, pp. 1–6 (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Tom Brosch
    • 1
    • 4
  • Youngjin Yoo
    • 1
    • 4
  • Lisa Y. W. Tang
    • 4
  • David K. B. Li
    • 2
    • 4
  • Anthony Traboulsee
    • 3
    • 4
  • Roger Tam
    • 2
    • 4
  1. 1.Department of Electrical and Computer EngineeringUBCVancouverCanada
  2. 2.Department of RadiologyUBCVancouverCanada
  3. 3.Division of NeurologyUBCVancouverCanada
  4. 4.MS/MRI Research GroupUniversity of British ColumbiaVancouverCanada

Personalised recommendations