International Conference on Medical Image Computing and Computer-Assisted Intervention

MICCAI 2015: Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015 pp 667-674

Robust Spectral Denoising for Water-Fat Separation in Magnetic Resonance Imaging

  • Felix Lugauer
  • Dominik Nickel
  • Jens Wetzl
  • Stephan A. R. Kannengiesser
  • Andreas Maier
  • Joachim Hornegger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9350)

Abstract

Fat quantification based on the multi-echo Dixon method is gaining importance in clinical practice as it can match the accuracy of spectroscopy but provides high spatial resolution. Accurate quantification protocols, though, are limited to low SNR and suffer from a high noise bias. As the clinically relevant water and fat components are estimated by fitting a non-linear signal model to the data, the uncertainty is further amplified. In this work, we first establish the low-rank property and its locality assumptions for water-fat MRI and, consequently, propose a model-consistent but adaptive spectral denoising. A robust noise estimation in combination with a risk-minimizing threshold adds to a fully-automatic method. We demonstrate its capabilities on abdominal fat quantification data from in-vivo experiments. The denoising reduces the fit error on average by 37% and the uncertainty of the fat fraction by 58% in comparison to the original data while being edge-preserving.

Keywords

Robust Denoising Water-Fat MRI Locally Low-Rank 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thampanitchawong, P., Piratvisuth, T.: Liver biopsy: complications and risk factors. World J. of Gastroenterol. 5, 301–304 (1999)CrossRefGoogle Scholar
  2. 2.
    Reeder, S.B., Wen, Z., Yu, H., Pineda, A.R., Gold, G.E., Markl, M., Pelc, N.J.: Multicoil dixon chemical species separation with an iterative least-squares estimation method. Magn. Reson. Med. 51(1), 35–45 (2004)CrossRefGoogle Scholar
  3. 3.
    Reeder, S.B., Cruite, I., Hamilton, G., Sirlin, C.B.: Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy. J. of Magn. Reson. Imaging 34(4), 729–749 (2011)CrossRefGoogle Scholar
  4. 4.
    Liu, C.-Y., McKenzie, C.A., Yu, H., Brittain, J.H., Reeder, S.B.: Fat quantification with ideal gradient echo imaging: correction of bias from t1 and noise. Magn. Reson. Med. 58(2), 354–364 (2007)CrossRefGoogle Scholar
  5. 5.
    Sharma, P., Altbach, M., Galons, J.-P., Kalb, B., Martin, D.R.: Measurement of liver fat fraction and iron with mri and mr spectroscopy techniques. Diagn. Interv. Radiol. 20(1), 17–26 (2014)Google Scholar
  6. 6.
    Bydder, M., Du, J.: Noise reduction in multiple-echo data sets using singular value decomposition. Magn. Resonance Imaging 24(7), 849–856 (2006)CrossRefGoogle Scholar
  7. 7.
    Cai, J.-F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. on Optim. 20(4), 1956–1982 (2010)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Trzasko, J., Manduca, A., Borisch, A.: Local versus global low-rank promotion in dynamic mri series reconstruction. In: Proc. Int. Symp. Magn. Reson. Med, p. 4371 (2011)Google Scholar
  9. 9.
    Candès, E.J., Sing-Long, C.A., Trzasko, J.D.: Unbiased risk estimates for singular value thresholding and spectral estimators. IEEE Trans. Signal Process. 61(19), 4643–4657 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Zhong, X., Nickel, M.D., Kannengiesser, S.A., Dale, B.M., Kiefer, B., Bashir, M.R.: Liver fat quantification using a multi-step adaptive fitting approach with multi-echo gre imaging. Magn. Reson. Med. 72(5), 1353–1365 (2014)CrossRefGoogle Scholar
  11. 11.
    Manjón, J.V., Coupé, P., Buades, A., Collins, D.L., Robles, M.: New methods for mri denoising based on sparseness and self-similarity. Med. Image Analysis 16(1), 18–27 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Felix Lugauer
    • 1
  • Dominik Nickel
    • 2
  • Jens Wetzl
    • 1
  • Stephan A. R. Kannengiesser
    • 2
  • Andreas Maier
    • 1
  • Joachim Hornegger
    • 1
  1. 1.Pattern Recognition LabFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  2. 2.MR Applications PredevelopmentSiemens HealthcareErlangenGermany

Personalised recommendations