Advertisement

Robust CT Synthesis for Radiotherapy Planning: Application to the Head and Neck Region

  • Ninon Burgos
  • M. Jorge Cardoso
  • Filipa Guerreiro
  • Catarina Veiga
  • Marc Modat
  • Jamie McClelland
  • Antje-Christin Knopf
  • Shonit Punwani
  • David Atkinson
  • Simon R. Arridge
  • Brian F. Hutton
  • Sébastien Ourselin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9350)

Abstract

In this work, we propose to tackle the problem of magnetic resonance (MR)-based radiotherapy treatment planning in the head & neck area by synthesising computed tomography (CT) from MR images using an iterative multi-atlas approach. The proposed method relies on pre-acquired pairs of non-rigidly aligned T2-weighted MRI and CT images of the neck. To synthesise a pseudo CT, all the MRIs in the database are first registered to the target MRI using a robust affine followed by a deformable registration. An initial pseudo CT is obtained by fusing the mapped atlases according to their morphological similarity to the target. This initial pseudo CT is then combined with the target MR image in order to improve both the registration and fusion stages and refine the synthesis in the bone region.

Results showed that the proposed iterative CT synthesis algorithm is able to generate pseudo CT images in a challenging region for registration algorithms. We demonstrate that the robust affine decreases the overall absolute error compared to a single affine transformation, mainly in images with small axial field-of-view, whilst the bone refinement process further reduces the error in the bone region, increasing image sharpness.

Keywords

Compute Tomogra Image Planning Target Volume Mean Absolute Error Magnetic Resonance Imaging Intensity Atlas Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jonsson, J., Akhtari, M., Karlsson, M., Johansson, A., Asklund, T., Nyholm, T.: Accuracy of inverse treatment planning on substitute CT images derived from MR data for brain lesions. Radiation Oncology 10(1) (2015)Google Scholar
  2. 2.
    Korhonen, J., Kapanen, M., Keyriläinen, J., Seppälä, T., Tenhunen, M.: A dual model HU conversion from MRI intensity values within and outside of bone segment for MRI-based radiotherapy treatment planning of prostate cancer. Medical Physics 41(1), 011704 (2014)Google Scholar
  3. 3.
    Dowling, J.A., Lambert, J., Parker, J., Salvado, O., Fripp, J., Capp, A., Wratten, C., Denham, J.W., Greer, P.B.: An atlas-based electron density mapping method for magnetic resonance imaging (MRI)-alone treatment planning and adaptive MRI-based prostate radiation therapy. International Journal of Radiation Oncology · Biology · Physics 83(1), e5–e11 (2012)Google Scholar
  4. 4.
    Sjölund, J., Forsberg, D., Andersson, M., Knutsson, H.: Generating patient specific pseudo-CT of the head from MR using atlas-based regression. Physics in Medicine and Biology 60(2), 825 (2015)CrossRefGoogle Scholar
  5. 5.
    Gudur, M.S.R., Hara, W., Le, Q.-T., Wang, L., Xing, L., Li, R.: A unifying probabilistic Bayesian approach to derive electron density from MRI for radiation therapy treatment planning. Physics in Medicine and Biology 59(21), 6595 (2014)CrossRefGoogle Scholar
  6. 6.
    Uh, J., Merchant, T.E., Li, Y., Li, X., Hua, C.: MRI-based treatment planning with pseudo CT generated through atlas registration. Med. Phys. 41(5) (2014)Google Scholar
  7. 7.
    Burgos, N., Cardoso, M.J., Thielemans, K., Modat, M., Pedemonte, S., Dickson, J., Barnes, A., Ahmed, R., Mahoney, C.J., Schott, J.M., Duncan, J.S., Atkinson, D., Arridge, S.R., Hutton, B.F., Ourselin, S.: Attenuation Correction Synthesis for Hybrid PET-MR Scanners: Application to Brain Studies. IEEE Transactions on Medical Imaging 33(12), 2332–2341 (2014)CrossRefGoogle Scholar
  8. 8.
    Modat, M., Ridgway, G.R., Taylor, Z.A., Lehmann, M., Barnes, J., Hawkes, D.J., Fox, N.C., Ourselin, S.: Fast free-form deformation using graphics processing units. Computer Methods and Programs in Biomedicine 98(3), 278–284 (2010)CrossRefGoogle Scholar
  9. 9.
    Modat, M., Cash, D.M., Daga, P., Winston, G.P., Duncan, J.S., Ourselin, S.: Global image registration using a symmetric block-matching approach. Journal of Medical Imaging 1(2), 024003 (2014)Google Scholar
  10. 10.
    Cachier, P., Bardinet, E., Dormont, D., Pennec, X., Ayache, N.: Iconic feature based nonrigid registration: the PASHA algorithm. Computer Vision and Image Understanding 89(2-3), 272–298 (2003)CrossRefzbMATHGoogle Scholar
  11. 11.
    Kristan, M., Pernus, F.: Entropy based measure of camera focus. In: Proc. ERK 2004, pp. 179–182 (2004)Google Scholar
  12. 12.
    Low, D.A., Harms, W.B., Mutic, S., Purdy, J.A.: A technique for the quantitative evaluation of dose distributions. Medical Physics 25(5), 656–661 (1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ninon Burgos
    • 1
  • M. Jorge Cardoso
    • 1
    • 2
  • Filipa Guerreiro
    • 3
  • Catarina Veiga
    • 4
  • Marc Modat
    • 1
    • 2
  • Jamie McClelland
    • 5
  • Antje-Christin Knopf
    • 3
  • Shonit Punwani
    • 6
    • 7
  • David Atkinson
    • 6
  • Simon R. Arridge
    • 5
  • Brian F. Hutton
    • 8
    • 9
  • Sébastien Ourselin
    • 1
    • 2
  1. 1.Translational Imaging Group, CMICUniversity College LondonLondonUK
  2. 2.Institute of Neurology, UCLDementia Research CentreLondonUK
  3. 3.Radiotherapy Imaging DepartmentThe Institute of Cancer ResearchLondonUK
  4. 4.Radiation Physics GroupUCL Medical Physics and BioengineeringLondonUK
  5. 5.Centre for Medical Image Computing, UCLLondonUK
  6. 6.Centre for Medical Imaging, UCLLondonUK
  7. 7.Department of RadiologyUniversity College London HospitalsLondonUK
  8. 8.Institute of Nuclear Medicine, UCLLondonUK
  9. 9.Centre for Medical Radiation PhysicsUniversity of WollongongWollongongAustralia

Personalised recommendations