International Conference on Medical Image Computing and Computer-Assisted Intervention

MICCAI 2015: Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015 pp 263-271 | Cite as

Mid-Space-Independent Symmetric Data Term for Pairwise Deformable Image Registration

  • Iman Aganj
  • Eugenio Iglesias
  • Martin Reuter
  • Mert R. Sabuncu
  • Bruce Fischl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9350)


Aligning a pair of images in a mid-space is a common approach to ensuring that deformable image registration is symmetric – that it does not depend on the arbitrary ordering of the input images. The results are, however, generally dependent on the choice of the mid-space. In particular, the set of possible solutions is typically affected by the constraints that are enforced on the two transformations (that deform the two images), which are to prevent the mid-space from drifting too far from the native image spaces. The use of an implicit atlas has been proposed to define the mid-space for registration. In this work, by aligning the atlas to each image in the native image space, we make implicit-atlas-based pairwise registration independent of the mid-space, thereby eliminating the need for anti-drift constraints. We derive a new symmetric data term that only depends on a single transformation morphing one image to the other, and validate it through diffeomorphic registration experiments on brain MR images.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Christensen, G.E., Johnson, H.J.: Consistent image registration. IEEE Transactions on Medical Imaging 20, 568–582 (2001)CrossRefGoogle Scholar
  2. 2.
    Cachier, P., Rey, D.: Symmetrization of the non-rigid registration problem using inversion-invariant energies: Application to multiple sclerosis. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 472–481. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Trouvé, A., Younes, L.: Diffeomorphic matching problems in one dimension: Designing and minimizing matching functionals. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 573–587. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Tagare, H., Groisser, D., Skrinjar, O.: Symmetric non-rigid registration: A geometric theory and some numerical techniques. J. Mathematical Imaging and Vision 34, 61–88 (2009)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Lorenzen, P., Prastawa, M., Davis, B., Gerig, G., Bullitt, E., Joshi, S.: Multi-modal image set registration and atlas formation. Medical Image Analysis 10, 440–451 (2006)CrossRefGoogle Scholar
  6. 6.
    Avants, B., Gee, J.C.: Geodesic estimation for large deformation anatomical shape averaging and interpolation. Neuroimage 23(supplement 1), S139–S150 (2004)Google Scholar
  7. 7.
    Yang, D., Li, H., Low, D., Deasy, J., Naqa, I.: A fast inverse consistent deformable image registration method based on symmetric optical flow computation. Phys. Med. Biol. 53 (2008)Google Scholar
  8. 8.
    Noblet, V., Heinrich, C., Heitz, F., Armspach, J.-P.: An efficient incremental strategy for constrained groupwise registration based on symmetric pairwise registration. Pattern Recognition Letters 33, 283–290 (2012)CrossRefGoogle Scholar
  9. 9.
    Lorenzi, M., Ayache, N., Frisoni, G.B., Pennec, X.: LCC-Demons: A robust and accurate symmetric diffeomorphic registration algorithm. Neuroimage 81, 470–483 (2013)CrossRefGoogle Scholar
  10. 10.
    Ashburner, J., Ridgway, G.R.: Symmetric diffeomorphic modelling of longitudinal structural MRI. Frontiers in Neuroscience 6 (2013)Google Scholar
  11. 11.
    Aganj, I., Reuter, M., Sabuncu, M.R., Fischl, B.: Avoiding symmetry-breaking spatial non-uniformity in deformable image registration via a quasi-volume-preserving constraint. Neuroimage 106, 238–251 (2015)CrossRefGoogle Scholar
  12. 12.
    Miller, M., Banerjee, A., Christensen, G., Joshi, S., Khaneja, N., Grenander, U., Matejic, L.: Statistical methods in computational anatomy. Stat. Methods Med. Res. 6, 267–299 (1997)CrossRefGoogle Scholar
  13. 13.
    Studholme, C., Cardenas, V.: A template free approach to volumetric spatial normalization of brain anatomy. Pattern Recognition Letters 25, 1191–1202 (2004)CrossRefGoogle Scholar
  14. 14.
    Aljabar, P., Bhatia, K.K., Murgasova, M., Hajnal, J.V., et al.: Assessment of brain growth in early childhood using deformation-based morphometry. Neuroimage 39, 348–358 (2008)CrossRefGoogle Scholar
  15. 15.
    Grenander, U., Miller, M.I.: Computational anatomy: an emerging discipline. Quarterly of Applied Mathematics LVI, 617-694 (1998)Google Scholar
  16. 16.
    Joshi, S., Davis, B., Jomier, M., Gerig, G.: Unbiased diffeomorphic atlas construction for computational anatomy. Neuroimage 23(supplement 1), S151–S160 (2004)Google Scholar
  17. 17.
    Hart, G.L., Zach, C., Niethammer, M.: An optimal control approach for deformable registration. In: Proc. IEEE CVPR Workshops, pp. 9–16 (2009)Google Scholar
  18. 18.
    Ma, J., Miller, M.I., Trouvé, A., Younes, L.: Bayesian template estimation in computational anatomy. Neuroimage 42, 252–261 (2008)CrossRefGoogle Scholar
  19. 19.
    Sabuncu, M.R., Yeo, B.T.T., Van Leemput, K., Vercauteren, T., Golland, P.: Asymmetric image-template registration. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part I. LNCS, vol. 5761, pp. 565–573. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Aganj, I., Yeo, B.T.T., Sabuncu, M.R., Fischl, B.: On removing interpolation and resampling artifacts in rigid image registration. IEEE Trans. Image Process. 22, 816–827 (2013)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Reuter, M., Rosas, H.D., Fischl, B.: Highly accurate inverse consistent registration: A robust approach. Neuroimage 53, 1181–1196 (2010)CrossRefGoogle Scholar
  22. 22.
    Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: Efficient non-parametric image registration. Neuroimage 45, S61–S72 (2009)Google Scholar
  23. 23.
    Marcus, D.S., Wang, T.H., Parker, J., Csernansky, J.G., Morris, J.C., Buckner, R.L.: Open Access Series of Imaging Studies (OASIS): Cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J. Cognitive Neuroscience 19, 1498–1507 (2007)CrossRefGoogle Scholar
  24. 24.
    Fischl, B.: FreeSurfer. Neuroimage 62, 774–781 (2012)CrossRefGoogle Scholar
  25. 25.
    Fischl, B., Salat, D.H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., der van, K.A., Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen, B., Dale, A.M.: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33, 341–355 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Iman Aganj
    • 1
  • Eugenio Iglesias
    • 2
  • Martin Reuter
    • 1
    • 3
  • Mert R. Sabuncu
    • 1
    • 3
  • Bruce Fischl
    • 1
    • 3
  1. 1.Martinos CenterMassachusetts General Hospital, Harvard Medical SchoolBostonUSA
  2. 2.Basque Center on Cognition, Brain and Language (BCBL)San SebastianSpain
  3. 3.CSAILMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations