Advertisement

Multi-scale and Multimodal Fusion of Tract-Tracing, Myelin Stain and DTI-derived Fibers in Macaque Brains

  • Tuo Zhang
  • Jun Kong
  • Ke Jing
  • Hanbo Chen
  • Xi Jiang
  • Longchuan Li
  • Lei Guo
  • Jianfeng Lu
  • Xiaoping Hu
  • Tianming Liu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9350)

Abstract

Assessment of structural connectivity patterns of brains can be an important avenue for better understanding mechanisms of structural and functional brain architectures. Therefore, many efforts have been made to estimate and validate axonal pathways via a number of techniques, such as myelin stain, tract-tracing and diffusion MRI (dMRI). The three modalities have their own advantages and are complimentary to each other. From myelin stain data, we can infer rich in-plane information of axonal orientation at micro-scale. Tracttracing data is considered as ‘gold standard’ to estimate trustworthy meso-scale pathways. dMRI currently is the only way to estimate global macro-scale pathways given further validation. We propose a framework to take advantage of these three modalities. Information of the three modalities is integrated to determine the optimal tractography parameters for dMRI fibers and identify crossvalidated fiber bundles that are finally used to construct atlas. We demonstrate the effectiveness of the framework by a collection of experimental results.

Keywords

Tract-tracing myelin stain DTI multi-scale and multimodal fusion atlas 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Van Essen, D.: A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385(6614), 313–318 (1997)CrossRefGoogle Scholar
  2. 2.
    Chédotal, A., Richards, L.: Wiring the brain: the biology of neuronal guidance. Cold Spring Harb. Perspect. Biol. 2(6), a001917 (1917)Google Scholar
  3. 3.
    Mikula, S., Trotts, I., Stone, J., Jones, E.G.: Internet-Enabled High-Resolution Brain Mapping and Virtual Microscopy. NeuroImage 35(1), 9–15 (2007)CrossRefGoogle Scholar
  4. 4.
    Parker, G.J., Stephan, K.E., Barker, G.J., Rowe, J.B., MacManus, D.G., Wheeler-Kingshott, C.A., Ciccarelli, O., Passingham, R.E., Spinks, R.L., Lemon, R.N., Turner, R.: Initial demonstration of in vivo tracing of axonal projections in the macaque brain and comparison with the human brain using diffusion tensor imaging and fast marching tractography. Neuroimage 15(4), 797–809 (2002)CrossRefGoogle Scholar
  5. 5.
    Leergaard, T.B., White, N.B., de Crespigny, A., Bolstad, I., D’Arceuil, H., Bjaalie, J.G., Dale, A.: Quantitative histological validation of diffusion MRI fiber orientation distributions in the rat brain. PLoS One 5(1), e8595 (2010)Google Scholar
  6. 6.
    Jbabdi, S., Lehman, J.F., Haber, S.N., Behrens, T.: Human and monkey ventral prefrontal fibers use the same organizational principles to reach their targets: tracing versus tractography. J. Neurosci. 33, 3190–3201 (2013)CrossRefGoogle Scholar
  7. 7.
    Sporns, O.: Networks of the Brain. MIT Press, Cambridge (2010)zbMATHGoogle Scholar
  8. 8.
    Bakker, R., Wachtler, T., Diesmann, M.: CoCoMac 2.0 and the future of tract-tracing databases. Front Neuroinform 6, 30 (2012)CrossRefGoogle Scholar
  9. 9.
    Kötter, R.: Online retrieval, processing, and visualization of primate connectivity data from the CoCoMac database. Neuroinformatics 2, 127–144 (2004)CrossRefGoogle Scholar
  10. 10.
    Van Essen, D.C.: Surface-based approaches to spatial localization and registration in primate cerebral cortex. Neuroimage 23(suppl. 1), S97–S107 (2004)Google Scholar
  11. 11.
    Markov, N.: A weighted and directed interareal connectivity matrix for macaque cerebral cortex 24(1), 17–36 (2012)Google Scholar
  12. 12.
    Lu, X., Zhang, S., Su, H., Chen, Y.: Mutual information-based multimodal image registration using a novel joint histogram estimation. Comput. Med. Imaging Graph. 32(3), 202-9 (2008)Google Scholar
  13. 13.
    Chang, C., Lin, C.: LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2, 27:1–27:27Google Scholar
  14. 14.
    Jing, K., Zhang, T., Lu, J., Chen, H., Guo, L., Li, L., Hu, X., Liu, T.: Multiscale and multimodal fusion of tract-tracing and DTI-derived fibers in macaque brains. In: ISBI (in press, 2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Tuo Zhang
    • 1
    • 2
  • Jun Kong
    • 3
  • Ke Jing
    • 4
  • Hanbo Chen
    • 2
  • Xi Jiang
    • 2
  • Longchuan Li
    • 3
  • Lei Guo
    • 1
  • Jianfeng Lu
    • 4
  • Xiaoping Hu
    • 3
  • Tianming Liu
    • 2
  1. 1.Northwestern Polytechnical UniversityXi’anChina
  2. 2.Cortical Architecture Imaging and Discovery LabThe University of GeorgiaAthensUSA
  3. 3.Emory UniversityAtlantaUSA
  4. 4.Nanjing University of Science and TechnologyNanjingChina

Personalised recommendations