Advertisement

A Liver Atlas Using the Special Euclidean Group

  • Mohamed S. HefnyEmail author
  • Toshiyuki Okada
  • Masatoshi Hori
  • Yoshinobu Sato
  • Randy E. Ellis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9350)

Abstract

An atlas is a shape model derived using statistics of a population. Standard models treat local deformations as pure translations and apply linear statistics. They are often inadequate for highly variable anatomical shapes. Non-linear methods has been developed but are generally difficult to implement.

This paper proposes encoding shapes using the special Euclidean group \(\mathbb{SE}(3)\) for model construction. \(\mathbb{SE}(3)\) is a Lie group, so basic linear algebra can be used to analyze data in non-linear higher-dimensional spaces. This group represents non-linear shape variations by decomposing piecewise-local deformations into rotational and translational components.

The method was applied to 49 human liver models that were derived from CT scans. The atlas covered 99% of the population using only three components. Also, the method outperformed the standard method in reconstruction. Encoding shapes as ensembles of elements in the \(\mathbb{SE}(3)\) group is a simple way of constructing compact shape models.

Keywords

Statistical Shape Model Special Euclidean Group Lie Groups Lie Algebras Anatomical Atlas 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Babalola, K.O., Patenaude, B., Aljabar, P., Schnabel, J.A., Kennedy, D., Crum, W.R., Smith, S., Cootes, T.F., Jenkinson, M., Rueckert, D.: Comparison and evaluation of segmentation techniques for subcortical structures in brain MRI. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 409–416. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models - their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)CrossRefGoogle Scholar
  3. 3.
    Davatzikos, C., Tao, X., Shen, D.: Hierarchical active shape models, using the wavelet transform. IEEE Trans. Med. Imaging (USA) 22(3), 414–423 (2003)CrossRefGoogle Scholar
  4. 4.
    Davies, R.H., Twining, C.J., Cootes, T.F., Waterton, J.C., Taylor, C.J.: A minimum description length approach to statistical shape modeling. IEEE Trans. Med. Imaging 21(5), 525–537 (2002)CrossRefzbMATHGoogle Scholar
  5. 5.
    Feng, J., Ip, H.H.S.: A muti-resolution statistical deformable model (MISTO) for soft-tissue organ reconstruction. Pattern Recognit. 42(7), 1543–1558 (2009)CrossRefGoogle Scholar
  6. 6.
    Fletcher, P.T., Lu, C., Pizer, S.M., Joshi, S.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans. Med. Imaging 23(8), 995–1005 (2004)CrossRefGoogle Scholar
  7. 7.
    Foruzan, A.H., Chen, Y.W., Hori, M., Sato, Y., Tomiyama, N.: Capturing large shape variations of liver using population-based statistical shape models. Int. J. Comp. Assist. Radiol. Surg. 9, 967–977 (2014)CrossRefGoogle Scholar
  8. 8.
    Heap, T., Hogg, D.: Extending the point distribution model using polar coordinates. In: Hlaváč, V., Šára, R. (eds.) CAIP 1995. LNCS, vol. 970, pp. 130–137. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  9. 9.
    Hefny, M.S.: Analysis of Discrete Shapes Using Lie Groups. Ph.D. thesis, Queen’s University (2014)Google Scholar
  10. 10.
    Hefny, M.S., Pichora, D.R., Rudan, J.F., Ellis, R.E.: Manifold statistical shape analysis of the distal radius. Int. J. Comp. Assist. Radiol. Surg. 9(supp. 1), S35–S42 (2014)Google Scholar
  11. 11.
    Hefny, M.S., Rudan, J.F., Ellis, R.E.: A matrix lie group approach to statistical shape analysis of bones. Stud. Health Technol. Inform. 196, 163–169 (2014)Google Scholar
  12. 12.
    Hotelling, H.: Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24, 417–441 (1933)CrossRefzbMATHGoogle Scholar
  13. 13.
    Lamecker, H., Lange, T., Seebass, M.: A statistical shape model for the liver. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002, Part II. LNCS, vol. 2489, pp. 421–427. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Okada, T., Linguraru, M.G., Yoshida, Y., Hori, M., Summers, R.M., Chen, Y.-W., Tomiyama, N., Sato, Y.: Abdominal multi-organ segmentation of CT images based on hierarchical spatial modeling of organ interrelations. In: Yoshida, H., Sakas, G., Linguraru, M.G. (eds.) Abdominal Imaging. LNCS, vol. 7029, pp. 173–180. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Pennec, X.: Intrinsic statistics on Riemannian nanifolds: basic tools for geometric measurements. J. Math. Imag. Vis. 25, 127–154 (2006)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Sommer, S., Lauze, F., Hauberg, S., Nielsen, M.: Manifold valued statistics, exact principal geodesic analysis and the effect of linear approximations. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 43–56. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Mohamed S. Hefny
    • 1
    Email author
  • Toshiyuki Okada
    • 2
  • Masatoshi Hori
    • 3
  • Yoshinobu Sato
    • 4
  • Randy E. Ellis
    • 1
  1. 1.Queen’s UniversityKingstonCanada
  2. 2.Tsukuba UniversityTsukubaJapan
  3. 3.Osaka UniversityOsakaJapan
  4. 4.Nara Institute of Science and TechnologyNaraJapan

Personalised recommendations