Dictionary Learning Based Image Descriptor for Myocardial Registration of CP-BOLD MR

  • Ilkay Oksuz
  • Anirban Mukhopadhyay
  • Marco Bevilacqua
  • Rohan Dharmakumar
  • Sotirios A. Tsaftaris
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9350)


Cardiac Phase-resolved Blood Oxygen-Level-Dependent (CP-BOLD) MRI is a new contrast agent- and stress-free imaging technique for the assessment of myocardial ischemia at rest. The precise registration among the cardiac phases in this cine type acquisition is essential for automating the analysis of images of this technique, since it can potentially lead to better specificity of ischemia detection. However, inconsistency in myocardial intensity patterns and the changes in myocardial shape due to the heart’s motion lead to low registration performance for state-of-the-art methods. This low accuracy can be explained by the lack of distinguishable features in CP-BOLD and inappropriate metric definitions in current intensity-based registration frameworks. In this paper, the sparse representations, which are defined by a discriminative dictionary learning approach for source and target images, are used to improve myocardial registration. This method combines appearance with Gabor and HOG features in a dictionary learning framework to sparsely represent features in a low dimensional space. The sum of absolute differences of these distinctive sparse representations are used to define a similarity term in the registration framework. The proposed approach is validated on a dataset of CP-BOLD MR and standard CINE MR acquired in baseline and ischemic condition across 10 canines.


Registration Dictionary Learning Similarity Metric CP-BOLD MR CINE MR 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aharon, M., et al.: K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation. IEEE TSP 54(11), 4311–4322 (2006)Google Scholar
  2. 2.
    Avants, B.B., et al.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. MIA 12(1), 26–41 (2008)Google Scholar
  3. 3.
    Heinrich, M.P., et al.: MIND: Modality independent neighbourhood descriptor for multi-modal deformable registration. MIA 16(7), 1423–1435 (2012)Google Scholar
  4. 4.
    Huang, X., et al.: Contour tracking in echocardiographic sequences via sparse representation and dictionary learning. MIA 18, 253–271 (2014)Google Scholar
  5. 5.
    Mukhopadhyay, A., Oksuz, I., Bevilacqua, M., Dharmakumar, R., Tsaftaris, S.A.: Data-driven feature learning for myocardial segmentation of CP-BOLD MRI. In: van Assen, H., Bovendeerd, P., Delhaas, T. (eds.) FIMH 2015. LNCS, vol. 9126, pp. 189–197. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  6. 6.
    Ou, Y., et al.: DRAMMS: Deformable registration via attribute matching and mutual-saliency weighting. MIA 15(4), 622–639 (2011)Google Scholar
  7. 7.
    Ou, Y., Ye, D.H., Pohl, K.M., Davatzikos, C.: Validation of DRAMMS among 12 popular methods in cross-subject cardiac MRI registration. In: Dawant, B.M., Christensen, G.E., Fitzpatrick, J.M., Rueckert, D. (eds.) WBIR 2012. LNCS, vol. 7359, pp. 209–219. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Pluim, J.P.W., et al.: Mutual-information-based registration of medical images: a survey. TMI 22(8), 986–1004 (2003)Google Scholar
  9. 9.
    Ramirez, I., et al.: Classification and clustering via dictionary learning with structured incoherence and shared features. In: IEEE CVPR, pp. 3501–3508 (2010)Google Scholar
  10. 10.
    Rueckert, D., et al.: Nonrigid registration using free-form deformations: application to breast MR images. TMI 18(8), 712–721 (1999)Google Scholar
  11. 11.
    Rusu, C., Tsaftaris, S.A.: Structured dictionaries for ischemia estimation in cardiac BOLD MRI at rest. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part II. LNCS, vol. 8674, pp. 562–569. Springer, Heidelberg (2014)Google Scholar
  12. 12.
    Rusu, C., et al.: Synthetic generation of myocardial blood-oxygen-level-dependent MRI time series via structural sparse decomposition modeling. IEEE TMI 7(33), 1422–1433 (2014)Google Scholar
  13. 13.
    Sotiras, A., et al.: Deformable Medical Image Registration: A Survey Medical Imaging. IEEE TMI 7(32), 1153–1190 (2013)Google Scholar
  14. 14.
    Studholme, C., et al.: Deformation-based mapping of volume change from serial brain MRI in the presence of local tissue contrast change. IEEE TMI 5(25), 626–639 (2006)Google Scholar
  15. 15.
    Tavakoli, V., et al.: A Survey of shape-based registration and segmentation techniques for cardiac images. CVIU 117, 966–989 (2013)Google Scholar
  16. 16.
    Tropp, J., et al.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE T. Information Theory 53(12), 4655–4666 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Tsaftaris, S.A., et al.: Detecting myocardial ischemia at rest with cardiac phase–resolved blood oxygen level–dependent cardiovascular magnetic resonance. Circulation: Cardiovascular Imaging 6(2), 311–319 (2013)Google Scholar
  18. 18.
    Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Non-parametric diffeomorphic image registration with the demons algorithm. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 319–326. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Zhuang, X., et al.: A nonrigid registration framework using spatially encoded mutual information and free-form deformations. IEEE TMI 10(30), 1819–1828 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ilkay Oksuz
    • 1
  • Anirban Mukhopadhyay
    • 1
  • Marco Bevilacqua
    • 1
  • Rohan Dharmakumar
    • 2
  • Sotirios A. Tsaftaris
    • 1
    • 3
  1. 1.IMT Institute for Advanced Studies LuccaLuccaItaly
  2. 2.Biomedical Imaging Research InstituteCedars-Sinai MedicalLos AngelesUSA
  3. 3.Department of Electrical Engineering and Computer ScienceNorthwestern UniversityEvanstonUSA

Personalised recommendations