Automatic Coronary Calcium Scoring in Cardiac CT Angiography Using Convolutional Neural Networks

  • Jelmer M. Wolterink
  • Tim Leiner
  • Max A. Viergever
  • Ivana Išgum
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9349)


The amount of coronary artery calcification (CAC) is a strong and independent predictor of cardiovascular events. Non-contrast enhanced cardiac CT is considered a reference for quantification of CAC. Recently, it has been shown that CAC may be quantified in cardiac CT angiography (CCTA). We present a pattern recognition method that automatically identifies and quantifies CAC in CCTA. The study included CCTA scans of 50 patients equally distributed over five cardiovascular risk categories. CAC in CCTA was identified in two stages. In the first stage, potential CAC voxels were identified using a convolutional neural network (CNN). In the second stage, candidate CAC lesions were extracted based on the CNN output for analyzed voxels and thereafter described with a set of features and classified using a Random Forest. Ten-fold stratified cross-validation experiments were performed. CAC volume was quantified per patient and compared with manual reference annotations in the CCTA scan. Bland-Altman bias and limits of agreement between reference and automatic annotations were -15 (-198–168) after the first stage and -3 (-86 – 79) after the second stage. The results show that CAC can be automatically identified and quantified in CCTA using the proposed method. This might obviate the need for a dedicated non-contrast-enhanced CT scan for CAC scoring, which is regularly acquired prior to a CCTA scan, and thus reduce the CT radiation dose received by patients.


Automatic coronary artery calcium scoring Cardiac CTA Convolutional neural network Random Forest 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rumberger, J.A., Brundage, B.H., Rader, D.J., Kondos, G.: Electron beam computed tomographic coronary calcium scanning: a review and guidelines for use in asymptomatic persons. Mayo Clin. Proc. 74(3), 243–252 (1999)CrossRefGoogle Scholar
  2. 2.
    Hecht, H.S.: Coronary artery calcium scanning: Past, present, and future. JACC: Cardiovasc. Imag. 8(5), 579–596 (2015)Google Scholar
  3. 3.
    Voros, S., Qian, Z.: Agatston score tried and true: by contrast, can we quantify calcium on CTA? J. Cardiovasc. Comput. Tomogr. 6(1), 45–47 (2012)CrossRefGoogle Scholar
  4. 4.
    Shahzad, R., van Walsum, T., Schaap, M., Rossi, A., Klein, S., Weustink, A.C., de Feyter, P.J., van Vliet, L.J., Niessen, W.J.: Vessel specific coronary artery calcium scoring: An automatic system. Acad. Radiol. 20(1), 1–9 (2013)CrossRefGoogle Scholar
  5. 5.
    Wolterink, J.M., Leiner, T., Takx, R.A.P., Viergever, M.A., Išgum, I.: Automatic coronary calcium scoring in non-contrast-enhanced ECG-triggered cardiac CT with ambiguity detection. IEEE Trans. Med. Imag. 34(9), 1867–1878Google Scholar
  6. 6.
    Otton, J.M., Lønborg, J.T., Boshell, D., Feneley, M., Hayen, A., Sammel, N., Sesel, K., Bester, L., McCrohon, J.: A method for coronary artery calcium scoring using contrast-enhanced computed tomography. J. Cardiovasc. Comput. Tomogr. 6(1), 37–44 (2012)CrossRefGoogle Scholar
  7. 7.
    Glodny, B., Helmel, B., Trieb, T., Schenk, C., Taferner, B., Unterholzner, V., Strasak, A., Petersen, J.: A method for calcium quantification by means of CT coronary angiography using 64-multidetector CT: very high correlation with Agatston and volume scores. Eur. Radiol. 19(7), 1661–1668 (2009)CrossRefGoogle Scholar
  8. 8.
    Mylonas, I., Alam, M., Amily, N., Small, G., Chen, L., Yam, Y., Hibbert, B., Chow, B.J.: Quantifying coronary artery calcification from a contrast-enhanced cardiac computed tomography angiography study. Eur. Heart J. Cardiovasc. Imaging 15(2), 210–215 (2014)CrossRefGoogle Scholar
  9. 9.
    Pavitt, C.W., Harron, K., Lindsay, A.C., Ray, R., Zielke, S., Gordon, D., Rubens, M.B., Padley, S.P., Nicol, E.D.: Deriving coronary artery calcium scores from CT coronary angiography: a proposed algorithm for evaluating stable chest pain. Int. J. Card. Imaging 30(6), 1135–1143 (2014)CrossRefGoogle Scholar
  10. 10.
    Wesarg, S., Khan, M.F., Firle, E.A.: Localizing calcifications in cardiac CT data sets using a new vessel segmentation approach. J. Digit. Imaging 19(3), 249–257 (2006)CrossRefGoogle Scholar
  11. 11.
    Ahmed, W., de Graaf, M.A., Broersen, A., Kitslaar, P.H., Oost, E., Dijkstra, J., Bax, J.J., Reiber, J.H., Scholte, A.J.: Automatic detection and quantification of the Agatston coronary artery calcium score on contrast computed tomography angiography. Int. J. Cardiovasc. Imaging 31(1), 151–161 (2014)CrossRefGoogle Scholar
  12. 12.
    Eilot, D., Goldenberg, R.: Fully automatic model-based calcium segmentation and scoring in coronary CT angiography. IJCARS 9(4), 595–608 (2014)Google Scholar
  13. 13.
    Teßmann, M., Vega-Higuera, F., Bischoff, B., Hausleiter, J., Greiner, G.: Automatic detection and quantification of coronary calcium on 3D CT angiography data. CSRDC 26(1), 117–124 (2011)Google Scholar
  14. 14.
    Schaap, M., Metz, C.T., van Walsum, T., van der Giessen, A.G., Weustink, A.C., Mollet, N.R., Bauer, C., Bogunović, H., Castro, C., Deng, X., et al.: Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms. Medical Image Analysis 13(5), 701–714 (2009)CrossRefGoogle Scholar
  15. 15.
    Prasoon, A., Petersen, K., Igel, C., Lauze, F., Dam, E., Nielsen, M.: Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part II. LNCS, vol. 8150, pp. 246–253. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Roth, H.R., Lu, L., Seff, A., Cherry, K.M., Hoffman, J., Wang, S., Liu, J., Turkbey, E., Summers, R.M.: A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part I. LNCS, vol. 8673, pp. 520–527. Springer, Heidelberg (2014)Google Scholar
  17. 17.
    Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.W.: elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imag. 29(1), 196–205 (2010)CrossRefGoogle Scholar
  18. 18.
    Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier networks. In: Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, vol. 15, pp. 315–323 (2011)Google Scholar
  19. 19.
    Tieleman, T., Hinton, G.: Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks for Machine Learning 4 (2012)Google Scholar
  20. 20.
    Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research 15(1), 1929–1958 (2014)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)CrossRefzbMATHGoogle Scholar
  22. 22.
    Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I.J., Bergeron, A., Bouchard, N., Bengio, Y.: Theano: new features and speed improvements. In: Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop (2012)Google Scholar
  23. 23.
    van der Bijl, N., Joemai, R.M., Geleijns, J., Bax, J.J., Schuijf, J.D., de Roos, A., Kroft, L.J.: Assessment of Agatston coronary artery calcium score using contrast-enhanced CT coronary angiography. Am. J. Roentgenol. 195(6), 1299–1305 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jelmer M. Wolterink
    • 1
  • Tim Leiner
    • 2
  • Max A. Viergever
    • 1
  • Ivana Išgum
    • 1
  1. 1.Image Sciences InstituteUMC UtrechtUtrechtThe Netherlands
  2. 2.Department of RadiologyUMC UtrechtUtrechtThe Netherlands

Personalised recommendations